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ABSTRACT structure. These signals typically occur in environments
that contain interferers of exploitable structure. The goal

This paper addresses the problem of direction finding for of this paper is to introduce a new algorithm, referred to
unstructured emitters in environments that contain inter- as Copy-Aided Joint Maximum Likelihood (CA-JML), that
ference signals with exploitable properties. The CA-JML effectively eliminates the presence of structured interferers
algorithm, presented here, offers dramatic angle estimationand allows the DF and copy of any unstructured emitters
improvement in environments that contain exploitable inter- that remain. The CA-JML algorithm is derived as a gen-
ference. The performance improvement is equivalent to theeralization of the Copy-Aided DF paradigm, in that it as-
removal of the interferers from the environment. The com- sumes that a weight subspace containing all the SOIs has
plexity of the algorithm, however, is comparable to MUSIC. been obtained. The traditional Copy-Aided DF situation
Even when structured interferers are not present, the CA-occurs as a special case of a rank 1 weight subspace.
JML algorithm can reduce the angle error bias exhibited
in MUSIC in challenging environments. The CA-JML al-
gorithm also admits a simple relaxation technique as each 2. DIRECTION FINDING FOR UNSTRUCTURED
emitter is localized, which reduces the probability of angle SIGNALS
estimation error due to the presence of ambiguous peaks in
the angle objective function.

2.1. CA-JML Signal Model and Derivation

The CA-JML algorithm can be formulated using maximum-1. INTRODUCTION
likelihood estimation, from a signal model that assumes a
known signal subspace, but makes no assumption on theA common signal processing task of sonar, radar or sesmic
structure of that signal subspace. The signal model can besensor arrays is to detect and localize narrow band emit-
described mathematically as follows:ters impinging on the array. The MUSIC algorithm, [6],

achieves this goal by exploiting the angles of arrival of the
[ �Q �  D V �Q � � L�Q �� (1)Jreceived wavefronts. The algorithm does not need knowl-

edge of the signal structure, but uses a calibrated array to
where D is the received aperture vector due to the sig-Jestimate the angles of arrival. However, when signals have
nal of interestV �Q � , at sample numbern , andL�Q � is theknown and exploitable properties, such as constant mod-
received interference vector, which includes environmentalulus, burstiness, or known constellations, it is possible to
and receiver noise, and might also include additional inter-exploit their structure to obtain linear copy weights and di-
ferers. The interferenceL�Q � is modeled as a complex cir-rection finding (DF). DF obtained by property exploitation,
cular Gaussian random vector of zero mean with unknownor Copy-Aided DF, yields inherently superior angle estima-
covariance5 , and the received aperture is modeled bytion than conventional superresolution techniques. This is LL

because the angle estimation adheres to a lower Cramer-
D s D �w �J � (2)JRao-Bound (CRB), (equivalent to a signal model that as-

sumes the signal of interest is known), and does not suf-
�whereD �w � is the steering vector as a function of anglefer from DF error bias due to the presence of interferers

of arrival (AOA) w , and J is an unknown complex gainhaving nearly the same angle of arrival as the signal of
constant. For brevity we refer toD �w � asD with an implicitinterest (SOI) [1, 2, 4, 3]. Despite these advantages, there
dependency on the AOA.is still a need to DF signals of unknown or un-exploitable

�This work was supported by the Intelligence and Electronic Warfare A model of the steering vector that mitigates against multipath, po-
Directorate, contract #DAAB10-93-C-0018 larization diversity and other impairments is developed in [1]



After substitution of (2) into (1), maximum likelihood The spectrum is modified by removingZ from the weight[

estimation yields the objective function [3, 1], subspace: . In this situation it should be noted that the[

CA-JML spectrum will contain multiple peaks, each peak� �c dc �c �+ � + corresponding to a genuine signal within the signal weightMZ D M D 5 D[ [
� s ln � � � (3)0 / subspace. Mathematically, the cancellation of a signal can+ c �

5 b 5 5 5V V [ V[ V [ [ be accomplished by using the optimalY determined previ-
ously from the eigenvalue problem. Therefore, ifY and�c � +whereZ s 5 5 , 5 s K[ �Q �[ �Q � L , 5 s[ V [ [ Q [ V[ [ w are the optimal scrambling gains and DOA for signal�f fK[ �Q �V �Q �L , and 5 s KV �Q �V �Q � L . This can beQ VV Q 1, then the complexity of the CA-JML spectrum can be re-

written in a more amenable form as follows. Define the duced by forcing the search into the orthogonal complement5c + [ Vwhitened signal subspace weights byZ s 5 ,[ [ of the Y weights. This exploits an additional property of5 V �
c +where5 is the Hermitian inverse of the Cholesky fac- the weight subspace that constrains the true “unscrambled”[ S

tor of 5 and 5 V s 5 . Also define the whitened copy weights to be an orthonormal mixing of the CA-JML[ [ VV
c +aperture vector,D s 5 D . Substituting these quantities weight subspace vector: ,[ [[

in (3) yields
c �

:  5 : 9 � (6)FR S \ [[w x
+Z 3 �D �Z[ [[

� s ln � � � (4) +0 / + where9 is orthonormal,9 9  , . The CA-JML weights� b Z Z [[
obtained in Section 3 have this orthonormal-combining prop-

where3 �% � is the projection operator defined by3 �% � s erty.
+ +c �% �% % � % and 3 �% � s , b 3 �% � ."

Equation (4) is the form of the maximum likelihood
function used by the copy aided DF paradigm. It assumes
knowledge of the copy weights, encapsulated here in the
vectorZ . The copy weights can be found using a variety[

of techniques. The CA-JML algorithm, however, assumes
that Z , is contained in the range space of a subspace[

matrix : . This assumption is consistent with the envi-[

ronment typically assumed for DF using the MUSIC algo-
rithm. In mathematical terms, it implies that we can write
Z s : Y � where: is an0 d 1 subspace[ [ [ VHQ V R U V LJ V

matrix, andY is an 1 d � vector of unknown scram-V LJ V Figure 1: CA-JML and Music Spectra
bling gains. A technique for obtaining: for unstructured[

signals is provided in Section 3. After substituting: Y[ A comparison between CA-JML and MUSIC in en-into (4) we obtain the CA-JML spectrum as the following
vironments that do not contain structured emitters showseigenvalue problem:6 s ccc& some distinct advantages for the CA-JML algorithm. The

++ + primary mathematical difference between MUSIC and CA-max X 4 3 �D � 4 X  T 3 �: �T � (5)[ [Z Z D D [[
+X �X X  � JML is that CA-JML adds an inverse data covariance ma-

trix whitening to the aperture and the subspace weights thatD [whereT s is the unit normalizedD and 4 is[D Z MUSIC does not employ. This whitening causes sharper[ N D N[

an orthonormal matrix spanning the column space of: . spectral peaks, reduces false maxima, or spectral ambigu-[

The CA-JML spectrum is a function of the angle of arrival ities, and also reduces DF error bias in difficult environ-
w , and has its maxima at the DOAs of the signals capturedments. This can be seen in Figure 1, where the MUSIC
in the signal weight subspace matrix: . spectrum is seen to exhibit large ambiguities not present in[

the CA-JML spectrum. Note also that the spectral peak at
R�� is removed in the secondary spectrum CAJML-2. The2.2. Advantages of CA-JML

computer simulated environment used to generate Figure 1
s sBecause the CA-JML spectrum is a simple generalization contains three emitters arriving at angles of�� , �� and

sof the copy-aided DF spectrum, it offers an architectural ��� . The emitters are received at��, �� and�� dB signal
to white noise power ratio (SWNR) respectively, and theadvantage to systems which would employ both copy-aided

and copy unaided DF. The DF spectra for both copy-aided noise interference is spatially colored, circularly symmetric,
complex Gaussian. A six element, isotropic array is usedand unaided DF can be dealt with using the same CA-JML
to DF each emitter.algorithm.

"An additional advantage of the CA-JML spectrum is If9 is an orthonormal basis for the vector subspace
�

the ability to reduce the complexity of the spectrum af- orthogonal toY , then a new signal weight subspace can�
"ter the DOA of an unstructured signal has been estimated. be generated by the formula,: s : 9 . By substi-[ [� �
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tuting : for : in (5), a new spectrum is generated, A general model for SOI subspace estimation is[ [�

which has cancelled signal 1 from the spectrum. + +
;  6 $ � 6 $ � - � (7). 8. 8The ability to cancel peaks after they have been iden-

+tified improves the performance of the DF search strategywhere;  >[ ����[ ����ccc[ �1 � @ is the Hermitian trans-
as Figure 2 indicates. After the SOI-1 peak is found, it is pose of a block of N data vector samples received in an
removed from the spectrum and the modified spectrum is 1 array, 6 is an 1 d 0 matrix whose columnsVH Q V 8 8

plotted. The modified spectrum does not contain the strongcontain the conjugate of the0 unknown, unstructured,8

ambiguity that would prevent the DF of SOI-2 if only the emitter waveforms,6 is an 1 d 0 matrix of 0. . .

initial spectrum is used. known and conjugated emitter waveforms,$ is the un-.

known 1 d 0 received aperture matrix excited byVHQ V .

the known emitters,$ is the unknown1 d 0 re-8 V HQ V 8

ceived aperture matrix for the unknown and unstructured
emitters and- is the Hermitian transpose of the received
interference. The columns of the aperture matrices$ and8

$ contain the steering vectors for each signal.- may.

be considered as due to purely to receiver or environmental
noise, in which case it is often modeled as white, circularly
symmetric, complex Gaussian noise, or it may contain in-
terference waveforms. This model yields the maximum
likelihood estimation function,

Q
c � + + +Figure 2: Removal of Ambiguities after Relaxation Step � s 7 U 5 �; b 6 $ b 6 $ � cccFR S \ . 8. 8LL R

+ +�; b 6 $ b 6 $ � � (8)In environments where MUSIC exhibits angle estima- . 8. 8

tion bias, CA-JML adheres more closely to the Determin-
where 5 is the known or measured interference auto-istic Cramer Rao Bound [7]. This can be seen in Figure 3, LL

R correlation matrix for- . 5 can be measured in nearbywhere two emitters are within� of one another. In this LL
channels or in different time blocks than the signals ofenvironment CA-JML clearly outperforms the MUSIC al-
interest. Any signal waveforms included in5 will begorithm when measured in terms of RMS angle error. LL
canceled from the angle estimator. If all signals need to be
localized, then5 can be set to the identity matrix or to

LL
an estimate of the background noise covariance.

After minimizing over$ , $ and6 , the CA-JML. 8 8

weight subspace can be obtained from

c + + A:  5 5 $ � (9)[ [ 8 VLL

where 5 is the Cholesky factor obtained from the QR[

decomposition of; , 5 is the Cholesky factor of5 ,
L LLS

A$  = f , and= is the dominant eigenspace associ-
8 VL

a aated with the0 largest eigenvalues of5 . 5 is defined8

by,Figure 3: RMS DF Error Performance for Nearly Co-Located
c + + c �Emitters a5 s 5 ; 3 �6 �; 5 b p , � (10)" .
L L

where, is the 1 d 1 identity matrix andp  �.VH Q V VHQ V

The matrix f is an 0 d 0 diagonal matrix and has8 8

3. CA-JML WEIGHTS AND THE REMOVAL OF the 0 largest eigenvalues on its diagonal. When58 LL
STRUCTURED INTERFERERS is known only approximately, thenp is set to the smallest

c + + c �eigenvalue of5 ; 3 �6 � ; 5 , which should be" .
L L

A key to improved performance for the CA-JML algorithm near unity in an underloaded array.
is the calculation of the weight subspace. If the weight If we assume that the emitter waveforms are uncor-

a asubspace can be calculated from deterministic parametersrelated, then for large1 , 5 assumes the form,5 {
+ c +then it can be shown that the CA-JML DF performance will $ 5 $ � where$ s 5 $ and5 sV V 8 V V8 8 8 88 L 8 L8 L Ladhere to the Copy-Aided CRB, which is equivalent to a +

6 6 . This asymptotic form yields the important result88signal model with a known SOI [5]. In most cases, how- that
ever, the weight subspace will be derived from stochastic

Aparameters. $ { $ 5 9 � (11)V 88 VL 8 L
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where9 is an0 d 0 orthonormal matrix and5 is8 8 V 8

the Cholesky factor of5 , which is diagonal when theV V8 8

signals are uncorrelated. It follows that the CA-JML weight
subspace is just an orthonormal scrambling of the “true”
copy weights as in (6) and consequently it is possible to
remove each emitter from the DF spectrum as it is localized.

The signals in6 are typically obtained by exploit-.

ing known properties of the emitter waveforms. If they
are constant modulus signals, then a multi-target constant
modulus algorithm can be employed [4]. If the signals are
localized in time (i.e. bursty), or frequency then this too Figure 4: CA-JML Finds Weak Emitter DOAs
can be exploited [3]. In some cases signals are estimated
using non-linear techniques such as demod/remod data di-
rected techniques [2]. For these signals the formula in (10) improving performance, and the loading limits of the al-
is appropriate, requiring the cross correlation between thegorithm. The CA-JML algorithm offers a natural synthesis
known signals and the data, and the auto-correlation of thebetween the copy and DF of structured signals, and the copy
known signals. The non-linear techniques hold the promiseand DF of unstructured signals in mixed environments.
of being able to copy and DF more signals then the number
of sensors, but are more computationally intensive. If on
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