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ABSTRACT

The sinusoidal model has proven useful for representation
and modification of speech and audio. One drawback, how-
ever, is that a sinusoidal signal model is typically derived
using a fixed frame size, which corresponds to a rigid sig-
nal segmentation. For nonstationary signals, the resolu-
tion limitations that result from this rigidity lead to re-
construction artifacts. It is shown in this paper that such
artifacts can be significantly reduced by using a signal-
adaptive segmentation derived by a dynamic program. An
atomic interpretation of the sinusoidal model is given; this
perspective suggests that algorithms for adaptive segmen-
tation can be viewed as methods for adapting the time
scales of the constituent atoms so as to improve the model
by employing appropriate time-frequency tradeoffs.

1. ADAPTIVE SIGNAL MODELS

Compact signal models are useful for analysis, compres-
sion, enhancement, and modification [1]. To achieve com-
paction for arbitrary signals, models must be constructed
in a signal-adaptive manner. Such signal adaptivity is the
central principle in methods such as best bases [2], adap-
tive wavelet packets [3], and various atomic decomposition
approaches such as matching pursuit [4, 5]; these models
can be interpreted as signal expansions in which the ex-
pansion functions are chosen in a signal-adaptive fashion
from an overcomplete set [1]. Signal adaptivity can also
be achieved in parametric methods such as the sinusoidal
model, in which the sinusoidal expansion functions are con-
structed using parameters extracted from the signal [1].

This paper is concerned with the sinusoidal model. The
basic problem is that the sinusoidal model is typically car-
ried out with a fixed frame size which may not be appro-
priate for all regions of a nonstationary signal. [t is demon-
strated that a fixed signal segmentation leads to resolution
limitations that result in artifacts such as pre-echo, which
is a well-known difficulty in audio coding [6]. An atomic
interpretation of the sinusoidal model suggests that these
reconstruction artifacts can be reduced by adapting the
time scales of the atoms according to the signal behav-
ior, 1.e. using long scales for stationary behavior and short
scales for transients. It is demonstrated that such adap-
tation can be carried out effectively using a segmentation
algorithm based on a dynamic program.
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Figure 1: Analysis windows and synthesis frames in the
sinusoidal model; the synthesis frames are defined by the
window centers.

2. SINUSOIDAL MODELING

The sinusoidal model has been widely used for speech and
audio processing [7, 8, 9]. This section reviews sinusoidal
analysis-synthesis, discusses reconstruction artifacts, and
suggests an atomic interpretation of the model.

2.1. Analysis-Synthesis

In sinusoidal modeling, a signal is represented as a sum of
slowly evolving sinusoids:

Q
o(t) & B(t) = > Aqglt)cos dy(t). (1)

Analysis for this model corresponds to finding moving es-
timates of the amplitude, frequency, and phase of the con-
stituent partials [7, 8, 9]. This estimation is typically car-
ried out by peak picking in the short-time Fourier domain.
The analysis yields partial parameters for each analysis
frame, and the data rate of the parameterization is given
by the analysis stride and the order of the model, i.e. the
number of partials @@ in Eq. (1). In the synthesis stage,
the stride-rate model parameters are connected from frame
to frame by a line tracking process and then interpolated
using low-order polynomial models to derive sample-rate
control functions for a bank of oscillators; the interpolation
is carried out based on underlying synthesis frames, which
are implicitly established by the analysis stride. Analysis
and synthesis frames are depicted in Fig. 1.

The sum-of-partials model in Eq. (1) has difficulty rep-
resenting broadband processes; these appear in the resid-
ual r(t) = z(t) — £(t). In applications involving musical
signals, where processes such as breath or bow noise are
important for synthesis realism, the residual can be inde-
pendently modeled to account for these features [8, 10]. As
discussed below, however, the residual also contains arti-
facts related to time-localized events in the original signal.



Noise-based models of the residual are not well-suited for
representing such features. To achieve perceptually accu-
rate modeling in a partials-plus-residual framework, then,
it 1s necessary to modify the sinusoidal model so as to re-
duce these reconstruction artifacts.

2.2. Reconstruction Artifacts

The resolution of the sinusoidal model is limited by the
choice of the analysis frame size and stride. For long
frames, the time resolution is inadequate for capturing sig-
nal dynamics such as attack transients. For short frames,
on the other hand, the frequency resolution is degraded
such that estimation of sinusoidal components becomes dif-
ficult. Thus, the sinusoidal model is governed by the same
basic tradeoffs as any time-frequency representation.

In compact models, limitations in time-frequency res-
olution tend to result in artifacts in the signal reconstruc-
tion; in turn, the analysis-synthesis process yields a nonzero
residual. The components of this residual arise both due
to errors made by the analysis as well as shortcomings of
the particular model. In the sinusoidal model, such errors
occur if the original signal does not behave in the manner
assumed by the line tracking and parameter interpolation
used in the synthesis. Then, the residual contains such
model artifacts in addition to the noiselike processes dis-
cussed above. While the algorithm to be discussed is useful
for reducing a variety of artifacts, the specific artifact that
will be considered here is pre-echo in the reconstruction
of signal onsets; this is of interest since high-quality music
synthesis requires preservation of note attacks [8].

Pre-echo in the sinusoidal model is caused by the fol-
lowing mechanism. Before the signal onset, there is an
analysis frame in which the signal is not present and no
partials are found. Thereafter, various partials are identi-
fied in the frame in which the onset occurs; the line track-
ing interprets these as new partials and connects them to
zero-amplitude partials in the previous frame using the in-
terpolation models [7]. This results in a smooth amplitude
envelope for each partial instead of a sharp onset. The syn-
thesis pre-echo in the case of linear amplitude interpolation
is shown in Fig. 2 for two simple signals, and in Fig. 5 for
a saxophone note; note the artifacts in the residuals.

2.3. Atomic Interpretation

In the sinusoidal model, the reconstruction process cor-
responds to a concatenation of nonoverlapping synthesis
frames. Each frame consists of a sum of time-limited par-
tials which can be interpreted as time-frequency atoms
constructed from the sinusoidal parameters derived by the
analysis. The sinusoidal model can thus be written as

o] 2 YD gs(t) = DY Ags(t)cosByy(t), (2)

where j is a synthesis frame index and the functions A, ;(¢)
and @, ;(¢) are time-limited to the j-th frame. The atomic
amplitude and phase functions are dictated by the param-
eter interpolation; in the typical case of first order ampli-
tude interpolation and third order phase, the sinusoidal
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Figure 2: Pre-echo in the sinusoidal model. Modeling the
onsets of (a) a sinusoid and (b) a simple harmonic signal
using the analysis windows depicted leads to (c,d) delocal-
ized reconstruction and (e,f) residuals with artifacts.

model computes a signal decomposition in terms of atoms
with linear amplitude and cubic phase.

The atomic interpretation of the sinusoidal model indi-
cates why it has difficulties representing transients. Each
atom in the decomposition spans a fixed-length synthesis
frame; this fixed resolution results in dispersion of events
that occur on short time scales, where the spreading is
caused both by the use of a long analysis window and the
accompanying long stride. To model nonstationary signals
effectively, it is necessary to admit atoms with a variety of
time supports into the decomposition. Such multiresolu-
tion sinusoidal modeling can be achieved by two methods:
filter bank approaches, wherein subband filtering is fol-
lowed by sinusoidal modeling of the channel signals with
long frames for low-frequency bands and short frames for
high-frequency bands [1, 11]; or, segmentation methods in
which the frame size is varied based on the signal charac-
teristics. This paper focuses on the latter, in which short
frames are used near transients, which improves time lo-
calization, and long frames are used for regions with sta-
tionary behavior, which improves frequency resolution and
allows for coding gain.

3. ADAPTIVE SEGMENTATION

Since the sinusoidal model is inherently parametric and
approximate, the analysis windows do not have to satisfy
an overlap-add property as in the perfect reconstruction
STFT [1]. This allows for flexibility in the window design
and furthermore justifies the use of time-varying windows
such as those depicted in Fig. 3; note that the synthesis
frames are defined by the centers of the analysis windows.
In this section, algorithms for signal-adaptive derivation of
such multiresolution segmentations are discussed.

In the sinusoidal model, the number of partials is a
main factor in the rate-distortion tradeoff. In a frame-wise
sense, this model order imposes a constraint on the maxi-
mum number of partials incorporated in a given frame. In
this consideration, a fixed model order will be assumed,
meaning that the analysis attempts to identify the same
number of partials in short segments as in long segments.
This constraint simplifies the line tracking process.
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Figure 3: Analysis windows and synthesis frames in a mul-
tiresolution sinusoidal model with adaptive segmentation.

3.1. Global Search

Given a fixed model order, the problem at hand is that of
finding a segmentation of the signal that minimizes some
metric such as the mean-squared error between the original
and the reconstruction. This optimization procedure can
be carried out by an exhaustive global search in which each
possible segmentation is considered in turn. Since a model
must be evaluated on each segment in each segmentation,
a simple estimate of the computational cost of a global
search can be arrived at by counting the total number of
segments in all of the possible segmentations. Denoting the
length of the signal by Ne and using the set of segment sizes
A ={e,2€¢,3¢,..., Le}, i.e. integer multiples of a cell size e,
this enumeration of segments is governed by an exponential
dependence on the signal length:

Caiobar o 27, (3)

While this is unrealistic as a measure of computational
cost in that it assumes an equal cost of model evaluation
on segments of different length, such an enumeration does
provide a basic indication that a global search is compu-
tationally prohibitive for long signals.

3.2. Dynamic Segmentation

If the optimization metric is additive and independent on
disjoint segments, an exhaustive evaluation of all possi-
ble segmentations involves redundant computation since
a given segment appears in many different segmentations.
This redundancy can be removed by formulating the com-
putation as a dynamic program, which is is based on treat-
ing the time span of the signal as a concatenation of cells
[12]. The boundaries between these cells will be referred to
as markers; these markers serve as nodes in the dynamic
program. Because of the integer construction of the allow-
able lengths in the set A, the segment boundaries in any
candidate segmentation align with some of these markers.

The operation of the dynamic algorithm for the case
L = 3 is depicted in Fig. 4; the expression Dy is used in
the figure to represent the metric associated with the signal
model on the segment between markers a and b. At each
marker, the algorithm computes and records the minimum
modeling metric to reach that marker; it also records the
length of the last segment in the corresponding segmenta-
tion, which is the optimal segmentation up to that point
in the signal, and the sinusoidal parameters computed for
that particular segment using an analysis window of a cor-
responding scale (see Fig. 3). When the end of the signal is
reached, the globally optimal segmentation can be recov-
ered by backtracking through the recorded lengths. The
computation at a given marker thus amounts to evaluat-
ing the modeling metric on each segment that leads to that
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Figure 4: Depiction of a dynamic algorithm for signal seg-
mentation. Note the regularity of the computation after
the startup; the cost grows linearly with the signal length.

marker; this is done by analyzing the signal with a window
based on the segment length (as in Fig. 3), synthesizing
the model based on tracking and interpolating the analy-
sis data back to the data recorded for the marker at the
start of the segment, and computing the reconstruction er-
ror. As suggested in Fig. 4, the total number of segments
on which models are computed has a linear dependence on
the length of the signal:

Caynamic « LN. (4

For more details on dynamic programs, the reader is re-
ferred to [13] or other texts on digital communication; the
widely used Viterbi algorithm for sequence detection is an
example of a dynamic program.

In signal modeling, it is generally important to achieve
continuity at synthesis frame boundaries. An example of
this is the use of lapped transforms in image processing
to reduce blocking artifacts caused by quantization. In
the sinusoidal model, the continuity problem is resolved
by using overlapping analysis frames and parameter inter-
polation functions that match the frequency and phase of
the reconstructed partials at the synthesis frame bound-
aries. The caveat here is that if such overlap methods are
used in the dynamic segmentation algorithm, the model-
ing metrics for adjacent segments are not strictly indepen-
dent. As aresult, the algorithm is not guaranteed to arrive
at the absolute optimal segmentation that a global search
would find. In practice, however, this dependency does not
degrade the performance of the algorithm [1, 3]; an exem-
plifying model of a saxophone onset is given in Fig. 5.

3.3. Heuristic Segmentation

As an alternative to global optimization via dynamic seg-
mentation, a signal-adaptive segmentation can be derived
in a forward manner by the following heuristic approach.
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Figure 5: Modeling example: (a) the onset of a saxophone
note, (b) a fixed resolution reconstruction and (c) the cor-
responding residual, where the dashed lines indicate the
synthesis frames; and, (d) a multiresolution model derived
by dynamic segmentation and (e) its residual, which ex-
hibits fewer artifacts.

At marker a in the signal, the weighted metrics Da/(b—a)
are evaluated for b € {a+1,a+2,...,a+ L}; the segment
length 1s then chosen according to the value b which mini-
mizes the weighted metric, and the algorithm is continued
from the new starting point a = b. For such an approach,
the number of segments considered is signal-dependent, so
the computational cost can only be formulated in an av-
erage sense; assuming that the average size of the chosen
segments 1s the mean of the set A, the segment enumeration
is governed by a linear dependence on the signal length:

Cforward x 2N. (5)

This heuristic algorithm can achieve similar results as the
dynamic approach, but it is not as robust since the segmen-
tation decisions are based on greedy local optimization of
the modeling metric [1]. In time-critical applications, the
reduced cost with respect to dynamic segmentation may
merit the accompanying decrease in model accuracy.

4. CONCLUSION

It has been demonstrated that using an adaptive segmen-
tation in the sinusoidal model reduces reconstruction ar-
tifacts such as pre-echo. In audio signal modeling, this
leads to an analysis-synthesis residual that can be more
effectively described using critical-band noise shaping as
n [10]. Tt should be noted that similar localization of on-
sets can be achieved by independently modeling the sig-
nal envelope [9]; in this adaptive segmentation approach,
however, a uniform sinusoidal parameterization is main-
tained, which is advantageous for synthesis computation.
The dynamic segmentation algorithm discussed herein can
be used to derive signal-adaptive models that are nearly

optimal with respect to segment-wise additive cost mea-
sures such as rate-distortion.
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