MULTIWEIGHT OPTIMIZATION IN OBE ALGORITHMS FOR IMPROVED TRACKING
AND ADAPTIVE IDENTIFICATION

D. Joachim, J.R. Deller, J, and M. Nayeri

Michigan State University
Department of Electrical Engineering / 2120 EB
Speech Processing and Adaptive Signal Processing Labs
East Lansing, Ml 48824-1226 USA

ABSTRACT
Optimal Bounding EllipsoidOBE) algorithms offer an at-

C;l andc,, def Z?Zl qt.nytx:. The weighting sequence at
timen, {g:»}7, is chosen to optimally diminish some set

tractive alternative to traditional least squares methods formeasure of the hyperellipsoid (see Section 2).

identifying linear-in-parameters signal and system models

due to their low computational efficiency, superior track-

OBE algorithms make selective use of incoming data in
updating the ellipsoid and central estimator. Frequently, the

ing ability, and selective updating that permits processor observations at time contain no innovation in the sense
sharing among tasks. These benefits are further enhancethat they cannot be used to redueg. This is manifest

by multiweight optimizatioMWO) which yields improved

in the failure to find valid weights, and the effort of updat-

per-point parameter convergence. This paper introduces théng can be avoided. Depending on the properties of the se-
MWO process and describes advances in its implementaquence{e,.}, OBE algorithms often update only 10% of

tion including the incorporation of a forgetting factor for
improved tracking, a new method for efficient weight com-

the time or less.
All published OBE algorithms can be manipulated into

putation, and extensions to volume-minimizing OBE algo- the formal framework above [1]. In no case, however, is

rithms. Simulation studies illustrate the results.

1. INTRODUCTION

Optimal bounding ellipsoi§OBE) identification algorithms
are used to identifiinear-in-parametersnodels of the form

1)

in which 8, € R™ is the unknown “true” parameter vec-
tor to be identified{x,,} is a sequence of measurable vec-
tors of dimensionn; and {e,.} is an unknown error se-

Yn = ofwn + Enx

guence. OBE algorithms are based on the premise that
for eachn, the model error has a known pointwise energy

bound,e?, < ~2. Given data on times € [1,n], these
bounds imply arexact feasibility setsay(?,,, of estimates

for 8. whose elements are consistent with the bounds and

the observations. OBE algorithms work with an hyperellip-
soidal set, saf),, D €, henced, € (2. The observations
are scrutinized with respect to their ability to “shrink,,
hence to tightly boun€®,,. Attimen (e.g., [1]),

0, ¥ 0:0-60,)7C.0-6,) <k} (2
in which C,, is the weightedtovariancematrix of the ob-

servationsC,, = > | qt7nmtmf, Ky, 1S the scalar

bin =00Cnbn+ > g7 = v}),

t=1

3)

and@,,, the center of},,, is a particular weighted least-

square-error estimator &,., 0, = P,c,, with P, def

there an attempt teeoptimizeany of the “previous” weights
at timen in light of the new measurements, andy,,. All
optimization in existing OBE algorithms is accomplished
by manipulating theurrentweight only. Theglobally opti-
mal solution at time, would optimizeall weights{g; , } -,

in light of all known information{ (x:, y;) }}- ;.

2. OBE WITH MULTIWEIGHT OPTIMIZATION

Generalities. The paper [2] reports a first attempt to de-
velop OBE algorithms that “revisitKl' > 1 past weights
at each time, so that the identification can more fully ex-
ploit information in the evolving observation stream. In
theseOBE algorithms with multiweight optimizati¢®BE-
MWO), the ellipsoid is optimally diminished with respect
to the current and padt’ observations, conditioned upon
extant information abh — K — 1. At time n, OBE-MWO
reoptimizes the time block — K,n — K +1,...n—1bhy
making additive adjustments to the correspondiighast
weights, subject to the constraint that revised (“accumu-
lated”) weights remain nonnegative. Accordingly, the time-
varying weights are

Qt,n = Qp X {

with the constrainty , > 0 for anyt andn. i fori > 0
denotes theth additive adjustment to the weight at time
t, AU is the original weight computation at time This

SR, 0<t<n-K

=0 Nt . (4
E?:J)\g, n—K<t<n @)

1As amended by a forgetting factor.



Table 1: IMMARY OF VECTOR AND MATRIX NOTATION. Table 2: OBE-MWOALGORITHM (GENERAL STEPS.

Let A andB be N x M matrices, and be anN-vector. | Initialization:

e A(i,j)denotesthéi, j) element ofA anda (i) the 1.0 =0, ki = pandPyx = L I, small.

ith element ofa. 2 % — 0 .
e D(a) is the diagonal matrix wittith diagonal elef I Re.cugign: '

mentayi). Forn=K+1,K+2,...
e Let A be N x N. N\,(A) is the diagonal matrix FormA* from X’ |

formed by setting all off-diagonal elements Afto If current K’ observations are innovative,

Zero. determine optimal weight vectak,,
e A(x,1i) is the N-vector comprising théth column [optimization criterion dependent].

of A. Otherwise, next.
e TheHadamard productd o B, is theN x M matrix If X,,(i) > 0 for all i, update:

with (i, j) elementA (i, j) B(i, j) [3]. en=y,— X0} ,

G,=X'P,_ X,
| Quantity ] Notation | UpdateP,,, 6., k., using egs. (5).

Regressormatri{ X, =[ @,k -+ &y | Otherwise, next.
Output vector Y= Y-k - Yn] Nextn.
Weight vector A=A o A0 update at timeu, AX = [A,_(n — K +1)---X._,(n —
Weight matrix A, =DAy) 1) 0], whereas the posteriorivalue isA, = A" + A,..
Bound vector Yo =[x " Mm] Minimization of x,: QOBE-MWO. The defining matrix
Bound matrix Ly =D(v,) for the hyperellipsoid at time. is [see (2)]P;/k,. The
Innovation vector| e, =y, — X, 0n—1 determinant d€ts,, P,, } is proportional to the square of the
Covar.-weighted volume of the ellipsoid, and is most often minimized as the
regressor energy| G, = X} P, 1 X, OBE optimization criterion. Minimization of the parameter
matrix kn has been used in [4], and more recently by Gollanatdi

al. [5, 6] in the quasi-OBE(QOBE) algorithm which pro-
vides interesting interpretations ef, minimization. Be-
cause of the relative algebraic simplicity of the QOBE, gen-
eralizedk,, minimization was used in developing the initial
OBE-MWO algorithm in [2]. Let us refer to this version of
the method aQ OBE-MWO

To find x,-optimal weights, Joachinet al. [2] have

computation is generalized from that in [2] by the inclusion

of a time-invariant sequence of forgetting factées } 7, .
OBE-MWO characteristically checks whether incoming

data are sufficiently innovative to diminish the §5t. This

effectively checks for the existence of an optilv@I> 0. If

the check fails, the past weights are already optimal in light

of the new measurement and no updating is required. If the

observation at time is informative, then, once the optimal shown that
weights{\;,_;} X, are found,P.,, 8,,, andr,, are updated K, Okin _ 2 _aq, [D(H;Ten)r . ®)
using recursions developedif2]: OA,

K, = 0k, /0A, is the diagonal matrix witlith diagonal

— -1 T >
P = Pooy = Poy XoHy An Xy, Py element isdk,,/ON,_,. A solution for A,, = D(A,) is
0, = 6,_1+P,X,Ane, (5) sought by settind<’,, = 0, yielding
_ T _ T gp—1
Kn = QpKkp—1+ ’YnAn’Yn anean Anen, An = I:G;Ll (ansn — Y © sn)] o (gg o Sn) (7)
whereH,, = a,,I + A,,G,,, and other notation is defined = (GnSnTy) Hanen — Snvn)
in Table 1. : in which s,, is the K’ x 1 “sign” vector with s,, (i) = +1
The general steps of an OBE-MWO algorithm are shown if the ith element offf -~ ¢,, is positive, and-1 otherwise:;
in Table 2. The computational details are dependent upon def ’ ’

and the matrixS,, = D(s,,). Either equation in (7) is the
desired solution for the,-optimal weight vector. When
K =0, this yields the optimal scalar weight for QOBE [5,
6]. Discussion of the solution appears below.

It remains to fill in details of the algorithm of Table 2
that are specific ta:,, optimization surrounding the com-
2Result modified to include forgetting factors. putation of the optimal weights. As in conventional OBE

the optimization criterion (discussed below). In any case,
the algorithm must assure that each reoptimized weight re-
mains nonnegative. This is done using a pair of weight-
accumulation vectors of dimensidfi + 1, A% andX,, (un-
derbar denotea priori, overbara posterior). Prior to the




algorithms, QOBE-MWO admits a shortcut to the determi- are unable to make meaningful statements about efficiency
nation of whether an optimal weiglbkists The check for  for the volume case. Itis possible to use the results above in
innovation at timen in the conventional QOBE algorithm  a “brute force” mode in order to study the performance of
(K =0)is |en| > v, With MWO (K > 0), satisfaction of  the volume-based algorithm in tracking and related identifi-
this simple test is still necessary for any further computation cation tasks. While a closed form solution to (8) remains an
to be required on the window— K, . ..,n. Indeed, ifthere ~ open issue, the following approximation method has been
is no innovation in the observation at timethen the pask’ found to provide a reasonable solution.

weights are already optimal. The computational cost of the o Useful Approximation. For simplicity the forgetting
method is therefore drastically reduced by recourse to thefactor is omitted here. In either optimization case, the re-
simple scalar check used in QOBE prior to further optimiza- cyrsjons (5) require the expensive computation of the term
tion. As formulated above, the computational complexity of H;'A,. Inturn, this term appears in (8) in the quantity
QOBE-MWO is significantly worseer updatethan thatof ;5o that the sought weight matrix is deeply embedded in

QOBE. However, these selective algorithms tend to incor- the right side. It is useful to expand the prodi#Ef * A, as

porate so few data that, even with the additional burden atgp infinite seriesH ;' A, = Y2, (~1)(G,A,,)" which
times of update, the overall complexity of QOBE-MWO re-  ¢an then be approximated by a small number of tetier

mainsO(m), the complexity of the simple checking step. example,

Further, there is empirical evidence that reoptimization may H;'A, ~ A, — A,GoA,,. (9)
result in a significant reduction in the number of updates
(Section 3) with respect to QOBE which is already sparse.
Finally, further work has begun to yield promising results  , ~ .  + YAy, —eTAve, — X AnGrA e,

for more efficient updating. These results will be included

in future papers. Minimizing &, quickly yields the weights (with correspond-
ing k,, at times of update)

The corresponding approximation fey, is

Volume. A solution for a volume minimizing OBE-MWO
is considerably more difficult, but we report recent progress A = (2E,GnE,) ‘(enoen—~,07,) (10)
n n

def @ ET)
here. LetB,, = P,k,, and denote the “volume ratio Ky = fni— AZEnGnEnAn (11)

between consecutive iterations By def detB,,/detB,,_;.

Following a development similar to that in [7], it can be WhereE, = D(en).
shown that the\,, = D()\,,) that minimizes/,, solves

- - - RLS
2 ---- QOBE
0=ml? —m [D(H’Tsn)] (G H )kn. (8) T QoBe 2wa

n

0.3

———  QOBE
---- QOBE-2WO
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Figure 2: Comparison of performance of RLS, QOBE, and
77777777777777777 QOBE-2WO in tracking the time-varying system of Sec. 3.
Only the second parameter is plotted. The numbers of up-
70 s 0 00 dates are 1200, 46, and 48, respectively.

Figure 1: Convergence performance of QOBE, QOBE- 3. SIMULATION STUDIES

2WO and QOBE-2WO (approx.) for the inifial simulation To discover the benefits of MWO, we investigate the per-

study of Sec. 3. Only the second parameter is plotted. Theformance of the QOBE-MWO algorithm with exact and ap-
numbers of updates are 18, 4, and 6, respectively.

: _ ; ; _ SNote that the purpose of this development is not to reduce the com-
Unlike the QOBE-MWO algomhm’ details of the op putational complexity of the inverse, sinééis usually small (1 to 3), but

ti.mizatioln remain open pending.the search for a more effi- 5ther 10 express,, and the volume in a way that facilitates the derivation
cient weight computation and existence check. We thereforeof an approximate closed-form solution.




proximated solutions compared with that of QOBE. Com- 4, CONCLUSION

parisqns with .RLS are .a'ls'o made in order to illustrate the This paper has introduced the concept of MWO for OBE al-
superior tracking capabilities of the OBE methods. gorithms. Simulation studies verify the expected results that
_ Initially, we seek to identify an ARX model [8] ofform (1) Mwo benefits performance with respect to conventional
with 0, = [ 0.73 —0.27 Jandz, = [ yp1 w, ]in OBE, and even further improves upon the well-known supe-
which both{w, } and{e,. } are bounded b1, +1]. Fig-  rjority of OBE algorithms over RLS. Moreover, the compu-
ure 1 shows the convergence behavior of the parameter eSgatignal complexity increasger updaterequired by MWO
timator. The exact QOBE-MWO algorithm shows the best yith respect to OBE is offset by significantly less-frequent
convergence, while the approximated version converges slighffating. Further, future research will likely yield more ef-
less quickly, but uses a reduced number of points with re-ficient computational procedures for MWO. The paper has
spect to QOBE (quantified in caption), and is of lower com- ¢gcused principally upon a-optimization (QOBE-type) MWO

plexity than the exact version. algorithm while providing initial results on a volume mini-
In a second experiment, the true parameters are abruptlynization algorithm.
changedfron®! = [ —0.2 1.0 Jto8] =[ —0.8 2.0 ] REFERENCES
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