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ABSTRACT
Optimal Bounding Ellipsoid(OBE) algorithms offer an at-
tractive alternative to traditional least squares methods for
identifying linear-in-parameters signal and system models
due to their low computational efficiency, superior track-
ing ability, and selective updating that permits processor
sharing among tasks. These benefits are further enhanced
bymultiweight optimization(MWO) which yields improved
per-point parameter convergence. This paper introduces the
MWO process and describes advances in its implementa-
tion including the incorporation of a forgetting factor for
improved tracking, a new method for efficient weight com-
putation, and extensions to volume-minimizing OBE algo-
rithms. Simulation studies illustrate the results.

1. INTRODUCTION

Optimal bounding ellipsoid(OBE) identification algorithms
are used to identifylinear-in-parametersmodels of the form

yn = �T
�
xn + "n� (1)

in which �� 2 <m is the unknown “true” parameter vec-
tor to be identified;fxng is a sequence of measurable vec-
tors of dimensionm; andf"n�g is an unknown error se-
quence. OBE algorithms are based on the premise that,
for eachn, the model error has a known pointwise energy
bound,"2n� � 2n. Given data on timest 2 [1; n], these
bounds imply anexact feasibility set, say
n, of estimates
for �� whose elements are consistent with the bounds and
the observations. OBE algorithms work with an hyperellip-
soidal set, say�
n � 
n, hence�� 2 �
. The observations
are scrutinized with respect to their ability to “shrink”�
n,
hence to tightly bound
n. At timen (e.g., [1]),

�
n
def
=
�
� : (� � �n)

TCn(� � �n) � �n
	

(2)

in whichCn is the weightedcovariancematrix of the ob-
servations,Cn =

Pn

t=1 qt;nxtx
T
t , �n is the scalar

�n = �TnCn�n +

nX
t=1

qt;n(
2
t � y2t ); (3)

and �n, the center of�
n, is a particular weighted least-

square-error estimator of��, �n = P ncn, with P n
def
=

C�1n andcn
def
=
Pn

t=1 qt;nytxt. The weighting sequence at
timen, fqt;ngnt=1, is chosen to optimally diminish some set
measure of the hyperellipsoid (see Section 2).

OBE algorithms make selective use of incoming data in
updating the ellipsoid and central estimator. Frequently, the
observations at timen contain no innovation in the sense
that they cannot be used to reduce�
n. This is manifest
in the failure to find valid weights, and the effort of updat-
ing can be avoided. Depending on the properties of the se-
quencef"n�g, OBE algorithms often update only 10% of
the time or less.

All published OBE algorithms can be manipulated into
the formal framework above [1]. In no case, however, is
there an attempt toreoptimizeany of the “previous” weights
at timen in light of the new measurementsxn andyn. All
optimization in existing OBE algorithms is accomplished
by manipulating thecurrentweight only. Thegloballyopti-
mal solution at timenwould optimizeall weightsfqt;ngnt=1,
in light of all known informationf(xt; yt)gnt=1.

2. OBE WITH MULTIWEIGHT OPTIMIZATION

Generalities. The paper [2] reports a first attempt to de-
velop OBE algorithms that “revisit”K � 1 past weights
at each time, so that the identification can more fully ex-
ploit information in the evolving observation stream. In
theseOBE algorithms with multiweight optimization(OBE-
MWO), the ellipsoid is optimally diminished with respect
to the current and pastK observations, conditioned upon
extant information atn � K � 1. At time n, OBE-MWO
reoptimizes the time blockn�K;n�K + 1; : : : n� 1 by
making additive adjustments to the correspondingK past
weights1, subject to the constraint that revised (“accumu-
lated”) weights remain nonnegative. Accordingly, the time-
varying weights are

qt;n = �n �

� PK

i=0 �
i
t; 0 � t � n�KPn�t

i=0 �
i
t; n�K < t � n

; (4)

with the constraintqt;n � 0 for any t andn. �it for i > 0
denotes theith additive adjustment to the weight at time
t, �0n is the original weight computation at timen. This

1As amended by a forgetting factor.



Table 1: SUMMARY OF VECTOR AND MATRIX NOTATION .

LetA andB beN �M matrices, anda be anN -vector.
� A(i; j) denotes the(i; j) element ofA anda(i) the
ith element ofa.

� D(a) is the diagonal matrix withith diagonal ele-
menta(i).

� Let A beN � N . &(A) is the diagonal matrix
formed by setting all off-diagonal elements ofA to
zero.

� A(�; i) is theN -vector comprising theith column
ofA.

� TheHadamard product,A�B , is theN�M matrix
with (i; j) elementA(i; j)B(i; j) [3].

Quantity Notation

Regressor matrix Xn =
�
xn�K � � � xn

�
Output vector yTn =

�
yn�K � � � yn

�
Weight vector �Tn =

�
�k�1n�K+1 � � � �0n

�
Weight matrix �n = D(�n)
Bound vector Tn =

�
n�K � � � n

�
Bound matrix �n = D(n)

Innovation vector "n = yn �X
T
n�n�1

Covar.-weighted
regressor energy Gn =XT

nP n�1Xn

matrix

computation is generalized from that in [2] by the inclusion
of a time-invariant sequence of forgetting factorsf�tgnt=1.

OBE-MWO characteristically checks whether incoming
data are sufficiently innovative to diminish the set�
n. This
effectively checks for the existence of an optimal�0n > 0. If
the check fails, the past weights are already optimal in light
of the new measurement and no updating is required. If the
observation at timen is informative, then, once the optimal
weightsf�in�ig

K
i=0 are found,P n, �n, and�n are updated

using recursions developed in2 [2]:

�nP n = P n�1 �P n�1XnH
�1
n �nX

T
nP n�1

�n = �n�1 +P nXn�n"n (5)

�n = �n�n�1 + 
T
n�nn � �n"

T
nH

�1
n �n"n;

whereHn = �nI +�nGn, and other notation is defined
in Table 1.

The general steps of an OBE-MWO algorithm are shown
in Table 2. The computational details are dependent upon
the optimization criterion (discussed below). In any case,
the algorithm must assure that each reoptimized weight re-
mains nonnegative. This is done using a pair of weight-
accumulation vectors of dimensionK + 1, ��n and��

�

n (un-
derbar denotesa priori, overbara posteriori). Prior to the

2Result modified to include forgetting factors.

Table 2: OBE-MWOALGORITHM (GENERAL STEPS).

I. Initialization:
1. �K = 0, �K = � andPK = 1

�2
I , � small.

2. ��
�

K = 0.
II. Recursion:

Forn = K + 1;K + 2; : : :
Form��n from ��

�

n�1

If currentK observations are innovative,
determine optimal weight vector,�n
[optimization criterion dependent].

Otherwise, nextn.
If ��

�

n(i) � 0 for all i, update:
"n = yn �X

T
n�

T
n�1

Gn =XT
nP n�1Xn

UpdateP n, �n, �n using eqs. (5).
Otherwise, nextn.

Nextn.

update at timen, ��n = [��
�

n�1(n �K + 1) � � � ��
�

n�1(n �

1) 0], whereas thea posteriorivalue is��
�

n = ��n + �n.

Minimization of �n: QOBE-MWO. The defining matrix
for the hyperellipsoid at timen is [see (2)]P�1n =�n. The
determinant detf�nP ng is proportional to the square of the
volume of the ellipsoid, and is most often minimized as the
OBE optimization criterion. Minimization of the parameter
�n has been used in [4], and more recently by Gollamudiet
al. [5, 6] in thequasi-OBE(QOBE) algorithm which pro-
vides interesting interpretations of�n minimization. Be-
cause of the relative algebraic simplicity of the QOBE, gen-
eralized�n minimization was used in developing the initial
OBE-MWO algorithm in [2]. Let us refer to this version of
the method asQOBE-MWO.

To find �n-optimal weights, Joachimet al. [2] have
shown that2

Kn
def
=

@�n
@�n

= �
2
n � �n

h
D(H�T

n "n)
i2
: (6)

Kn = @�n=@�n is the diagonal matrix withith diagonal
element is@�n=@�in�i. A solution for�n = D(�n) is
sought by settingKn � 0, yielding

�n =
�
G�1n (�n"n � n � sn)

�
�
�
gTn � sn

�
(7)

= (GnSn�n)
�1(�n"n � Snn)

in which sn is theK � 1 “sign” vector with sn(i) = +1
if the ith element ofH�T

n "n is positive, and�1 otherwise;

and the matrixSn
def
= D(sn). Either equation in (7) is the

desired solution for the�n-optimal weight vector. When
K = 0, this yields the optimal scalar weight for QOBE [5,
6]. Discussion of the solution appears below.

It remains to fill in details of the algorithm of Table 2
that are specific to�n optimization surrounding the com-
putation of the optimal weights. As in conventional OBE



algorithms, QOBE-MWO admits a shortcut to the determi-
nation of whether an optimal weightexists. The check for
innovation at timen in the conventional QOBE algorithm
(K = 0) is j"nj > n. With MWO (K > 0), satisfaction of
this simple test is still necessary for any further computation
to be required on the windown�K; : : : ; n. Indeed, if there
is no innovation in the observation at timen, then the pastK
weights are already optimal. The computational cost of the
method is therefore drastically reduced by recourse to the
simple scalar check used in QOBE prior to further optimiza-
tion. As formulated above, the computational complexity of
QOBE-MWO is significantly worseper updatethan that of
QOBE. However, these selective algorithms tend to incor-
porate so few data that, even with the additional burden at
times of update, the overall complexity of QOBE-MWO re-
mainsO(m), the complexity of the simple checking step.
Further, there is empirical evidence that reoptimization may
result in a significant reduction in the number of updates
(Section 3) with respect to QOBE which is already sparse.
Finally, further work has begun to yield promising results
for more efficient updating. These results will be included
in future papers.

Volume. A solution for a volume minimizing OBE-MWO
is considerably more difficult, but we report recent progress

here. LetBn
def
= P n�n, and denote the “volume ratio”

between consecutive iterations byVn
def
= detBn=detBn�1.

Following a development similar to that in [7], it can be
shown that the�n = D(�n) that minimizesVn solves

0 = m�2n �m
h
D(H�T

n "n)
i2
�&(GnH

�T
n )�n: (8)
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Figure 1: Convergence performance of QOBE, QOBE-
2WO and QOBE-2WO (approx.) for the initial simulation
study of Sec. 3. Only the second parameter is plotted. The
numbers of updates are 18, 4, and 6, respectively.

Unlike the QOBE-MWO algorithm, details of the op-
timization remain open pending the search for a more effi-
cient weight computation and existence check. We therefore

are unable to make meaningful statements about efficiency
for the volume case. It is possible to use the results above in
a “brute force” mode in order to study the performance of
the volume-based algorithm in tracking and related identifi-
cation tasks. While a closed form solution to (8) remains an
open issue, the following approximation method has been
found to provide a reasonable solution.

A Useful Approximation. For simplicity the forgetting
factor is omitted here. In either optimization case, the re-
cursions (5) require the expensive computation of the term
H�1

n �n. In turn, this term appears in (8) in the quantity
�n, so that the sought weight matrix is deeply embedded in
the right side. It is useful to expand the productH�1

n �n as
an infinite seriesH�1

n �n =
P
1

i=0(�1)
i(Gn�n)

i which
can then be approximated by a small number of terms.3 For
example,

H�1
n �n � �n ��nGn�n: (9)

The corresponding approximation for�n is

�n � �n�1 + 
T
n�nn � "

T
n�n"n � "

T
n�nGn�n"n:

Minimizing�n quickly yields the weights (with correspond-
ing �n at times of update)

�n = (2EnGnEn)
�1("n � "n � n � n) (10)

�n = �n�1 � �
T
nEnGnEn�n (11)

whereEn = D("n).

0 200 400 600 800 1000 1200
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time (n)

LP
 p

ar
am

et
er

 #
2

RLS        
QOBE       
QOBE−2WA   
True param.

Figure 2: Comparison of performance of RLS, QOBE, and
QOBE-2WO in tracking the time-varying system of Sec. 3.
Only the second parameter is plotted. The numbers of up-
dates are 1200, 46, and 48, respectively.

3. SIMULATION STUDIES

To discover the benefits of MWO, we investigate the per-
formance of the QOBE-MWO algorithm with exact and ap-

3Note that the purpose of this development is not to reduce the com-
putational complexity of the inverse, sinceK is usually small (1 to 3), but
rather to express�n and the volume in a way that facilitates the derivation
of an approximate closed-form solution.



proximated solutions compared with that of QOBE. Com-
parisons with RLS are also made in order to illustrate the
superior tracking capabilities of the OBE methods.

Initially, we seek to identify an ARX model [8] of form (1)
with �T

�
=
�
0:73 �0:27

�
andxTn =

�
yn�1 wn

�
in

which bothfwng andf"n�g are bounded by[�1;+1]. Fig-
ure 1 shows the convergence behavior of the parameter es-
timator. The exact QOBE-MWO algorithm shows the best
convergence, while the approximated version converges slightly
less quickly, but uses a reduced number of points with re-
spect to QOBE (quantified in caption), and is of lower com-
plexity than the exact version.

In a second experiment, the true parameters are abruptly
changed from�T

�
=
�
�0:2 1:0

�
to�T

�
=
�
�0:8 2:0

�
then back again. The superior tracking of QOBE-MWO
compared to RLS and the conventional QOBE algorithm
is evident in Fig. 2. This is due to the ability of the algo-
rithm to quickly converge to the correct parameter estima-
tor. Again, the higher computational cost (i.e., over allK+1
data) is offset by the small number of points used.

Finally, Fig. 3 illustrates the effectiveness of QOBE-
MWO in spectral estimation of a speech sound. We blindly
estimate the 14 linear-prediction parameters [9] of the phoneme
/I/ and subsequently reconstruct its spectrum using a 256-
point frame. The superior spectral approximation using QOBE-
MWO is evident. The reference spectrum (light series of
dots) is provided by the “covariance” method convention-
ally used in speech analysis [9]. This experiment demon-
strates another interesting (empirical) property of QOBE-
MWO with respect to QOBE. Note that QOBE updates only
one time on the frame. This is presumably due to overes-
timated bounds which cause the QOBE algorithm to stop
taking points [7]. The QOBE-MWO is more aggressive in
finding innovation in the data, even in the presence of these
“loose” error bounds.
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Figure 3: Spectral estimates of a 256-point speech segment
(phoneme /I/) using OBE-2WO (exact and approximate)
and QOBE. The reference spectrum is provided by the batch
“covariance” method used in speech analysis.

4. CONCLUSION

This paper has introduced the concept of MWO for OBE al-
gorithms. Simulation studies verify the expected results that
MWO benefits performance with respect to conventional
OBE, and even further improves upon the well-known supe-
riority of OBE algorithms over RLS. Moreover, the compu-
tational complexity increaseper updaterequired by MWO
with respect to OBE is offset by significantly less-frequent
updating. Further, future research will likely yield more ef-
ficient computational procedures for MWO. The paper has
focused principally upon a�-optimization (QOBE-type) MWO
algorithm while providing initial results on a volume mini-
mization algorithm.
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