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ABSTRACT

Cepstral coefficients derived either through linear prediction
(LP) analysis or from filter bank are perhaps the most com-
monly used features in currently available speech recogni-
tion systems. In this paper, we propose spectral subband
centroids as new features and use them as supplement to
cepstral features for speech recognition. We show that these
features have properties similar to formant frequencies and
they are quite robust to noise. Recognition results are re-
ported in the paper justifying the usefulness of these fea-
tures as supplementary features.

1. INTRODUCTION

Selection of proper acoustic features is perhaps the most im-
portant task in the design of a speech recognition system.
It directly affects the performance of a speech recognizer.
These features should be selected in such a manner that they
should contain maximum information necessary for speech
recognition and, at the same time, discard irrelevant infor-
mation such as speaker characteristics, manner of speaking,
background noise, channel distortion, etc. Feature selec-
tion is a difficult task and a great deal of research has been
done to identify these features (see [1] and references given
therein for different front-ends). Once these features are
selected, they are extracted from the speech signal on the
frame-by-frame basis.

Cepstral coefficients derived either through linear pre-
diction (LP) analysis or from filter bank are perhaps the
most commonly used features in currently available speech
recognition systems [2]. These features provide a reason-
able recognition performance, and have served the speech
recognition community quite well for the last two decades.
However, we believe that time has come for investigating
the use of new features, if we want to improve the speech
recognition performance significantly. Here, we are not sug-
gesting to replace the cepstral features (which have been
a great success in the past) by the new features. Instead
we want the new features to be used alongwith the cepstral

features. If this increases the dimensionality of the feature
space, linear discriminant analysis may be used for dimen-
sionality reduction [3, 4].

One of the major problems with the cepstral features is
that they are very sensitive to additive noise distortion. Ad-
dition of white noise to the speech signal affects the speech
power spectrum at all the frequencies, but the effect is less
noticable in the higher amplitude (formant) portions of the
spectrum (i.e., signal-to-noise ratio is more in the formant
regions than in the non-formant regions). Since cepstrum
features use formant as well as non-formant regions of the
power spectrum in their computation, they become very sen-
sitive to additive white noise. This problem can be over-
come by using formant frequencies as features, as the for-
mant locations are not disturbed by the additive noise dis-
tortion. In addition to this robustness to noise, formants
have many other advantages. For example, they provide
most parsimonious representation of the spectral envelope
and have physical interpretation as vocal tract resonances.
Because of these advantages, the formant frequencies were
used as recognition features in the sixties. But they have
been lately abandoned mainly due to the problems associ-
ated with their estimation from the speech signal. These
problems arise due to merging of peaks in the spectrum
and appearance of spurious peaks in the spectrum. These
problems cause gross errors in formant extraction. If we
can overcome these problems or devise features which have
properties similar to formant frequencies, we can improve
the speech recognition performance.

In this paper, we want to investigate some formant-like
features for speech recognition. Obviously, these features
should provide information for speech recognition differ-
ent from the cepstral features, if they are to be used as a
supplement to the cepstral features. In this paper, we pro-
pose to use spectral subband centroids (SSCs) as supple-
mentary features for speech recognition. These features are
having similarities with the formant frequencies and can be
extracted easily and reliably (without any estimation errors)
from the power spectrum of the speech signal. In this paper,
we provide recognition results justifying the use of these



features as supplementary features for speech recognition.

2. SPECTRAL SUBBAND CENTROIDS (SSCS)

In order to define spectral subband centroids, we divide the
frequency band (i.e.;0 to Fs=2, whereFs is the sampling
frequency in Hz) into a fixed number of subbands and com-
pute the centroid for each subband using the power spec-
trum of the speech signal. Though this definition looks
simple, there are a number questions we have to answer
here. For example, we have to decide how many subbands
to be used, how should the frequency band be divided into
subbands (i.e., what should be the center and cutoff fre-
quencies of the subband filters and whether should the sub-
bands be disjoint or overlap each other), what should be the
shape of subband filters, whether to use unsmoothed (FFT)
power spectrum or the smooth spectral envelope (computed
through LP analysis) for computing the centroids, whether
to compress the dynamic range of the power spectrum for
centroid computation and to what extent, etc. In this paper,
we try to provide answers to these questions through exper-
imentation using recognition performance as the criterion.

Let us assume that the frequency band[0; Fs=2] is di-
vided intoM subbands. Let the lower and higher edges of
mth subband belm andhm, respectively, and its filter shape
bewm(f). We define themth subband spectral centroidCm
as follows:

Cm =

R hm
lm

fwm(f)P 
 (f)df
R hm
lm

wm(f)P 
 (f)df
; (1)

whereP (f) is the power spectrum and
 is a constant con-
trolling the dynamic range of the power spectrum. By set-
ting 
 < 1, the dynamic rage of the power spectrum can be
reduced.

3. ANALYSIS RESULTS

For illustration purposes, we computeM SSCs using the
unsmoothed (FFT) power spectrum. We divide the frequency
band[0; Fs=2] into M equal-length disjoint subbands and
employ a rectangular shape foreach subband filter. The
lower and higher edge frequencies ofM subbands are given
by l1 = 0, hM = Fs=2 andlm+1 = hm = m�Fs=(2�M ),
for m = 1; 2; :::;M � 1. We use a 30-ms long segment
of vowel /ee/ sampled at 8000 Hz to perform SSC analysis
for M = 3 and
 = 0:5. Results are shown in Fig. 1(a).
Note that the centroids are located in this figure at frequen-
cies different from the formant frequencies. If the aim were
to make the centroids nearer to the formant frequencies, it
could have been done by choosing a larger value for
. In-
stead of dividing the frequency band uniformly on the Hz
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Figure 1: Subband spectral centroids (SSCs) from the FFT
power spectrum of the vowel /ee/. The subband boundaries
are shown in solid vertical lines and the centroids by dashed
vertical lines. (a) Uniform subband division on Hz scale and
(b) uniform subband division on mel scale.

scale, we can divide it uniformly on the mel scale. The re-
sulting subband centroids are shown in Fig. 1(b). When the
frequency band is divided uniformly on the Hz scale, we
call the resulting SSCs as the Hertz Frequency Centroids
(HFCs). Similarly, the SSCs computed by dividing the fre-
quency band uniformly on mel scale are called the Mel Fre-
quency Centroids (MFCs).
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Figure 2: SSCs for the utterance “Why were you away a
year Roy?” withM = 3 and
 = 0:5. (a) 4 poles from LP
analysis, (b) HFC-FFT, and (b) MFC-FFT.

In Fig. 1, we have used the unsmoothed (FFT) power
spectrum for computing the subband spectral centroids. We
can also use the smooth (LP) power spectrum for the cen-



troid computation. This will give another two sets of cen-
troids depending on the division of the frequency band on
the Hz scale or the mel scale. Thus, we have introduced
four types of subband spectral centroids. These are: 1)
HFC-FFT (FFT power spectrum and Hz scale), 2) MFC-
FFT (FFT power spectrum and mel scale), 3) HFC-LP (LP
power spectrum and Hz scale), and 4) MFC-LP (LP power
spectrum and mel scale).

In order to show the similarity between formants and
SSCs, we use a sentence “Why were you away a year Roy?”
spoken by a male speaker and sampled at 8000 Hz frequency.
We perform frame-wise analysis of this speech utterance
with frame-update of 10 ms and frame-duration of 30 ms.
In order to provide an indication of formant frequencies, we
compute a 10-th order LP analysis and plot the first 4 poles
as a function of time in Fig. 2(a). Only those poles hav-
ing bandwidth less than 600 Hz are shown in this figure.
From this figure, we can clearly observe problems we usu-
ally encounter in formant extraction process due to merg-
ing of peaks and introduction of spurious peaks. Results of
SSC analysis are shown in Fig. 2(b) and (c) for the HFC-
FFT and MFC-FFT cases, respectively, withM = 3 and

 = 0:5. Comparison of Fig. 2(b) and (c) with Fig. 2(a)
clearly shows similarities between formants and SSCs.
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Figure 3: SSCs for the noisy utterance “Why were you away
a year Roy?” (SNR = 10 dB) withM = 3 and
 = 0:5. (a)
4 poles from LP analysis, (b) HFC-FFT, and (b) MFC-FFT.

In order to show the effect of additive noise on SSCs, we
add simulated white Gaussian noise to the utterance “Why
were you away a year Roy?” and make its signal-to-noise
ratio (SNR) 10 dB. Analysis results for this noisy utterance
are shown in Fig. 3. We can see from Fig. 3(a) that the
poles from LP analysis are greatly affected by the noise dis-
tortion. However, the SSCs shown in Fig. 3(b) and (c) are

not affected that much by the noise distortion (as evident by
comparing these plots with Fig. 2(b) and (c)). Also, note
that the trajectories in Fig. 3(b) and (c) remain quite smooth
and continuous in spite of the presence of noise. This illus-
trates the robustness of SSC features to noise distortion.
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Figure 4: Subband filter shapes for computing MFCs with
M = 3, (a) when subbands are disjoint and (b) when sub-
bands are overlapped.

So far, we have used disjoint subbands for computing
SSCs. In order to make a smooth transition from one sub-
band to the next subband, it may be desirable to introduce
some overlap between neighboring subbands. We use here
a triangular shape for the overlapped subbands, while a rect-
angular shape has been used in the preceding paragraphs for
the disjoint subbands. The filter shapes are shown in Fig.
4(a) and (b) for the disjoint and overlapped subbands, re-
spectively. Note the amount of overlap used from Fig. 4(b).
Fig. 5 shows the SSC trajectories for the utterance “Why
were you away a year Roy?”. Comparison of Fig. 4 with
Fig. 2 shows the improvement in SSC estimation obtained
by overlapping the subbands.

4. RECOGNITION RESULTS

We evaluate the performance of the subband spectral cen-
troids as recognition features using an HMM-based isolated
word speech recognizer as a test-bed. We use a vocabu-
lary of 9 English e-set alphabets. Speech recognition perfor-
mance is evaluated in a speaker-dependent mode. The data
base consists of speech from a single male talker. Sixty ut-
terances of each word are used for training and an additional
60 utterances for testing. Speech is digitized at a sampling
rate of 8 kHz. The speech signal is analyzed every 10 ms
with a frame width of 30 ms (with Hamming window and
preemphasis). Endpoints ofeach utterance are manually de-
termined.

Here we use 3 HFC-LP type of SSCs computed with
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Figure 5: SSCs computed from the overlapped subbands
for the utterance “Why were you away a year Roy?” with
M = 3 and
 = 0:5. (a) 4 poles from LP analysis, (b)
HFC-FFT, and (b) MFC-FFT.


 = 0:5 and 10 LP derived cepstral coefficients. For LP
analysis, we use a linear predictor of order 10 (with Ham-
ming window and preemphasis). We list here results for the
close condition (training and test data sets are identical) as
well as for the open condition (test data set is different from
training data set). We can see that just 3 subband centroids
can provide a good recognition performance. When they are
used as supplementary features to the cepstral features, they
improve the recognition performance significantly.

Table 1: Speech recognition results.

Recognition features Recognitionaccuracy (in %)
close open

10 cepstrum 90.6 84.3
3 centroid 90.2 84.1

10 cepstrum + 3 centroid 94.5 90.8

5. CONCLUSIONS

In this paper, spectral subband centroids (SSCs) are pro-
posed as features for speech recognition. It is shown that
these features have properties similar to formant frequen-
cies and are quite robust to noise. When these features are
used as a supplement to cepstral features, we have shown
that recognition performance improves. This indicates that
the SSC features provide additional information (not cap-
tured by cepstral features) for speech recognition.
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