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ABSTRACT

We present an e�cient method for estimating non-
linearly entered parameters of a linear signal model
corrupted by additive noise. The method uses the
Gram-Schmidt orthonormalization procedure in com-
bination with a number of iterations to de-bias and
re-balance the coupling between non-orthogonal sig-
nal components e�ciently. Projection interpretation
is provided as rationale of the proposed iterative algo-
rithm. Computer simulations are conducted to show
the e�ectiveness of the algorithm.

1. INTRODUCTION

Many parameter estimation problems can be reduced
to the problem of estimating non-linearly entered pa-
rameters of a linear signal model corrupted by additive
noise. Typical application examples are frequency es-
timation problem in time series analysis [1 � 4], time
delay and direction of arrivals (DoA) estimation prob-
lem in array signal processing [6 � 7], and parametric
modeling of empirical data [5]. Recent research e�orts
in this area are mainly focused on two aspects. One is
to develop computationally e�cient algorithms to esti-
mate non-linear signal parameters, the other is to de-
velop algorithms that provide very low SNR threshold
[1� 7].

This work presents a novel idea of e�ciently esti-
mating non-linear signal parameters using the Gram-
Schmidt (G-S) orthonormalization procedure in combi-
nation with a few number of iterations. To demonstrate
the main ideas of this work, we choose the problem of
estimating two frequencies of sinusoids embedded in
white Gaussian noise as our application example. Re-
sults of this work can also be applied to delay estima-
tion and DoA estimation [5; 7]. Using the projection
notation and interpretation of section 4, the proposed
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algorithm can be generalized straightforwardly to more
general case, where more than just two sinusoids are
present in the data.

2. NOTATION AND PROBLEM

FORMULATION

We assume that the available discrete-time data can be
modeled as,

y[t] = a1 e
j 2� f1 t + a2 e

j 2 � f2 t + n[t] ;

n = 0; 1; : : : ; N � 1:
(1)

where a1 and a2 are complex amplitudes of the two
sinusoids; t is the sample index; f1 and f2 are non-

linearly entered signal parameters; n[t] is complex white
Gaussian noise with zero mean and variance 2�2.

In this work, we assume that a1; a2; f1; f2; and
�2 are all deterministic and unknown. We are mainly
interested in estimating frequencies f1 and f2 based on
N samples of the available data in (1). To facilitate
the inner product formulation in the G-S procedure,
we rewrite (1) in matrix notation,

y = a1 s1(f1) + a2 s2(f2) + n ;

=
�
s1(f1) s2(f2)

�
| {z }

S(�)

�

�
a1
a2

�
+ n ; (2)

with y =
�
y[0] y[1] � � � y[N � 1]

�T
; � =

�
f1 f2

�T
;

si(fi) =
�
1 ej 2� fi � � � ej 2 � fi (N�1)

�T
; (i = 1; 2);

and n =
�
n[0] n[1] � � � n[N � 1]

�T
.

Note that the matrix notation in (2) is a general model

for linear signal in additive noise, which arises in many
signal processing applications. Even though the non-
linearly entered parameters f1 and f2 are separately
contained in signal terms a1 s1(f1) and a2 s2(f2), only
the data y that contain the combined signal corrupted
by noise are available for estimation purpose. The op-
timummaximumlikelihood estimate (MLE) of � corre-



sponds to the global maximum of the compressed like-
lihood function (CLF) [1; 6],

�̂ = argmax
�

fL(�) g ;

= argmax
�

n
yH PS(�) y

o
;

(3)

where H denotes complex conjugate transpose, and
PS(�) = S(�) (SH(�)S(�))�1 SH(�) is a projection

matrix associated with subspace < S(�) >. The CLF
in (3) can be written as [1; 6]

L(f1; f2) =

jY (f1)j2 + jY (f2)j2 �
2
N Re fY �(f1) �(f1; f2)Y (f2)g

N
�
1� 1

N2 j�(f1; f2)j2
� ;

(4)

where �(f1; f2) = sH1 (f1) s2(f2) =
N�1X
t=0

ej 2� (f2�f1) t;

Y (fi) =
N�1X
t=0

y[t] e�j 2� fi t is simply the DFT of data y

evaluated at fi (i = 1; 2).
In order to reduce the computations in (3), various

computationally e�cient algorithms, such as the K-T
[1], the KiSS/IQML [2; 3], the AP [4], and the FML
[6], have been proposed. In this work, we proposed a
G-S orthonormalization based iterative projection algo-
rithm. The idea of using the G-S orthonormalization
in combination with a few number of iterations is to
de-bias and re-balance the coupling between the usu-
ally non-orthogonal signal components, so that the task
of searching for the maximum of a multi-dimensional
CLF can be simpli�ed into a few iterative 1-D searches.

3. PROPOSED ESTIMATION ALGORITHM

The proposed algorithm provides e�cient estimates for
both frequencies by combining the G-S orthonormal-
ization with a few iterations. The major steps of the
algorithm are summarized as follows,

� Initial estimates (i=1) [8]:

f̂
(i)
1 = argmax

f

�
jY (f) j2

	
;

f̂
(i)
2 = argmax

f

n
W (f � f̂

(i)
1 ) � jR(f ; f̂ (i)1 ) j2

o
;

(5)

� Re�ned estimates (for i = 2; 3; � � �):

f̂
(i)
1 = argmax

f

�
W (f � f̂

(i�1)
2 ) �

���R(f ; f̂ (i�1)2 )
���2
�
;

f̂
(i)
2 = argmax

f

�
W (f � f̂

(i)
1 ) �

���R(f ; f̂ (i)1 )
���2
�
;

(6)

where W (f) is a weighting function used to de-bias the

e�ect of f̂1 on estimating f2 in the initialization stage,
and the e�ect of f̂2 on estimating f1 in the re�nement
stage. It is an even function given by [8],

W (f) =

8>>>><
>>>>:

1

1�
1

N2

�����
N�1X
n=0

e�j 2� f n

�����
2 ; f 6= 0

0 ; f = 0
(7)

Y (f) and R(f ; f̂
(i)
j ); (j = 1; 2) are the DFTs of the

original data y[t] and the residual data r[t], respec-
tively,

r[t] = y[t]�
1

N

N�1X
m=0

y[m] e�j 2 � f̂
(i)
j

(m�t) ; (8)

R(f ; f̂
(i)
j ) = Y (f) �

1

N
Y (f̂

(i)
j ) � �(f; f̂

(i)
j ) : (9)

The weighting function W (f) is found to be related to
the �(f1; f2) in (4) through,

W (f1 � f2) =
1

1�
1

N2
j �(f1; f2) j

2
: (10)

4. PROJECTION INTERPRATATION AND

RATIONALE OF PROPOSED ALGORITHM

To understand the above proposed algorithm, we pro-
vide the projection interpretation of the algorithm in
this section. The orthogonal projection matrix PS(�)
in (3) can be decomposed as follows [7],

PS(�) = Ps1 + PP?

s1s2
; (11)

= Ps2 + PP?

s2
s1 ; (12)

where Psi = si ( s
H

i si )
�1
sHi ; (i = 1; 2) is the pro-

jection metrix associated with subspace < si >. While
PP?

si
sj ; (i; j = 1; 2) is the projection matrix associated

with subspace < P?sisj >, which is the part of < sj >
that is unaccounted for by the subspace < si >. In the
above simpli�ed notation, we used s1 and s2 to denote
s1(f1) and s2(f2), respectively.

Using formulae (11) and (12), the CLF L(f1; f2) in
equations (3) and (4) can, therefore, be rewritten as,

yH PS(�) y = yH Ps1 y + y
H PP?

s1s2
y ; (13)

= yH Ps2 y + y
H PP?

s2
s1 y : (14)

These two equations provide the rationale of the iter-
ative G-S based estimation algorithm in formulae (5)



and (6). To fully understand the observation, we con-
centrate only on the equation (13). The decomposed
two terms in (13) can be precisely written as,

yH Ps1 y =
1

N
j sH1 y j

2 =
1

N
jY (f1) j

2 ; (15)

yH PP?

s1s2
y = yH P?s1 s2

�
sH2 P

?
s1 s2

��1
sH2 P

?
s1 y =

1

N � 1
N j �(f1; f2) j

2 �

���� sH2 y �
sH2 s1 s

H

1 y

N

����
2

;

=
1

N � 1
N j �(f1; f2) j2

�

�
jY (f2) j

2
�

2

N
Re (Y �(f1) �(f1; f2)Y (f2) ) +

1

N2
j�(f1; f2)Y (f1) j

2
�
;

=
1

N
�W (f1 � f2) � jR(f2; f1) j

2
:

(16)
Based on the decomposition of CLF in formulae (15)
and (16), we can approximately reduce the 2-D maxi-
mization in (3) into the follwoing two 1-D maximiza-
tions,

f̂1 = argmax
f

n
jY (f) j2

o
;

f̂2 = argmax
f

�
W (f � f̂1) �

���R(f ; f̂1) ���2
�
:

(17)

As a matter of fact, our proposed algorithm uses the
results of (17) in its initialization stage (see formula
(5)). It can be seen that when s1(f1) and s2(f2) are not
orthogonal, (17) yields a biased estimate of f1, hence
a bisaed estimate of f2. However, under the condition
that f̂1 is a unbiased estimate of f1, the f̂2 obtained
from the weighted DFT of the residual signal in (17)
should also be a unbiased estimate of f2. The e�ect of
the weighting function W (f � f̂1) is to debias [8] the

e�ect of the s1(f̂1) on the estimate f̂2 obtained from

the R(f ; f̂1).
Using this observation in combination with the fol-

lowing forms for the second term in formula (14),

yH PP?

s2
s1 y =

1

N
�W (f1 � f2) � jR(f1; f2) j

2
; (18)

we can re�ne our initial estimates, f̂1 and f̂2, using
formulae (17) and (18) iteratively, as proposed in (6).
The actual e�ect of the iteration in (6) is to re-balance
and de-bias the coupling between the non-orthogonal
signal components, and �nally to obtain the MLEs of
signal frequencies.

It is noted that the proposed algorithm is di�er-
ent from previously proposed computationally e�cient
methods, such as the K-T [1], the KiSS/IQML [2; 3],
the AP [4], and the FML [6]. For application of sinu-
soidal parameter estimation, a di�erent initialization
idea is used prior to the Newton search in [6],

f̂1 = argmax
f

n
jY (f) j

2
o
;

f̂2 = argmax
f

n
L(f̂1; f)

o
;

(19)

with L(f̂1; f) =
j Y (f) j2� 2

N
RefY �(f̂1)�(f̂1;f2)Y (f)g

1� 1
N2 j �(f̂1;f2) j

2
,

which is di�erent fromW (f� f̂1) �
���R(f ; f̂1) ���2 in (17).

This can be justi�ed by the equivalent relation between
the two under maximization while f̂1 is �xed,

W (f�f̂1)�
���R(f ; f̂1)� 1

N2 j�(f̂1; f)Y (f̂1)j
2
���2 eqv:

= L(f̂1; f).

5. SIMULATION EXAMPLES

Using the proposed algorithm, simulations have been
conducted for di�erent choice of signal strengthes and
frequencies. The algorithm provides statistically and
computationally e�cient estimates for both signal fre-
quencies. Simulation results are plotted in �gure 1 for
the cases of di�erent signal strengthes and frequency
spacings. Throughout our simulations, we assume that
N = 25 data samples are available, and the noise sam-
ples are i.i.d. complex Gaussian N (0; 2�2). We ter-
minate the iteration in (6) whenever the di�erence be-
tween old estimate and updated estimate of either fre-
quency is within half the width of frequency bin. The
width of frequency quantization bin is chosen based on
the value of the CR bound at each SNR. 1000 indepen-
dent trials are run for each point of SNR.

In the �gure 1, we plotted the MSE of estimates of

both frequencies versus SNR
4
= 10 log10(

1
2�2 ) in dB.

Note that in calculating threshold SNR for each si-
nusoidal component, one needs to translate the SNR
used in the �gure into each signal's SNR using formula

SNRi
4
= 10 log10(

jaij
2

2�2 ) = SNR + 10 log10(jaij
2)dB.

For the case shown in �gure 1(a), we have two or-
thogonal signals (f2 � f1 = 5=N ) with very di�erent
strengthes embedded in WGN. The iterative algorithm
stops right after the �rst iteration (i = 2). Notice that
the threshold SNR for the �rst strong signal s1(f1) oc-
curs approximately at�3dB. While the threshold SNR
for the weak signal s2(f2) occurs approximately around
SNR1 = �3dB too. For the case shown in �gure 1(b),
we have two closely spaced signals (f2 � f1 << 1=N )
with same strength embedded in WGN. The iterative
algorithm stops right after a few iterations (from i = 2
to i = 4 for di�erent SNRs). Notice that the thresh-
old SNR for both signal components s1(f1) and s2(f2)
occurs approximately at 1dB. For the case shown in



�gure 1(c), two equal strength signal are closely spaced
as f2 � f1 = 1=N . The iterative algorithm stops right
after a few iterations (from i = 3 to i = 10 for di�erent
SNRs). In this case, the threshold SNR equals 0dB for
both frequencies.

6. CONCLUSIONS

An iterative Gram-Schmidt based estimationmethod is
proposed for estimating non-linear parameters of linear
signal embedded in additive noise. For application of
estimating sinusoid frequencies, computer simulations
show that the method provides e�cient estimates for
both frequencies with low SNR thresholds under var-
ious signal strength and frequency spacing combina-
tions. When the strengthes of two sinusoidal compo-
nents are very di�erent, we obtain the e�cient esti-
mates of both frequencies within very few iterations,
regardless of the closed spacing between the two fre-
quencies. When the two signal components are orthog-
onal (jf1 � f2j =

k
N with k being any integer), very

few iterations are needed in getting e�cient estimates
of frequencies.
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(c). signal s[t] = 1 ej 2� 0:52 t + 1 ej 2� 0:56 t:

Figure 1: Estimation accuracy of the proposed G-S

based iterative estimators for both frequencies of sinu-

soidal components embedded in WGN. Horizontal axis

is de�ned as SNR = 10 log10(
1

2�2 ) in dB. While SNR

for each sinusoidal component is de�ned as SNRi =

10 log10(
jaij

2

2�2 ). Asterisks denote the MSE of f̂1 in dB;

circles denote the MSE of f̂2 in dB, and solid lines de-
note the corresponding CR bounds.


