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ABSTRACT

Automatic modulation classification (or recognition) is an
intrinsically interesting problem with a variety of regulatory
and military applications. We developed a method which is
simple, fast, efficient and robust. The feature being used is
the counts of signals falling into different parts of the signal
plane. Compared with the likelihood method and the High
Order Correlation method, it is much easier to be imple-
mented, and the execution is much faster. When the chan-
nel model is correct, our method is efficient, in the sense
that it will achieve the “optimal” classification rate. When
unknown contamination is present, our method can auto-
matically overcome to certain degree. At SNR being10
and15dB, examples of classifying two modulation types—
QAM4 and PSK6—are given. Simulations demonstrate its
ability to deal with unknown noises.

1. INTRODUCTION

A lot of methods have been developed for automatic mod-
ulation classification. They are either based on likelihood
function or high order correlation [2] [6] [9] [13], or based
on some special features of digital signal [1] [8] [11] [12].
Our method is similar to those methods in the second cate-
gory. Its originality is the Hellinger distance parameter esti-
mation method, which is developed in mathematical statis-
tics [3] [4] [5]. It has been known for a while [10] [14] that
Hellinger distance estimator is robust and efficient in param-
eter estimation. In modulation classification, Hellinger dis-
tance method seems to be an ideal candidate, because some-
times we do not have the perfect knowledge about the noise
model. For example the noise may not be Gaussian, or the
estimated SNR may not be accurate, etc. Hellinger distance
can automatically overcome moderate degree of model dis-
tortion. But the likelihood ratio related method is incapable
to do it. As well as achieving robustness, Hellinger distance
method also possesses efficiency . Under the right model
assumption, at least asymptotically(when the number of re-
ceived signals is large), the Hellinger distance method is as
efficient as likelihood method is.
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Our approach can be divided into three steps: First, the
signal plane is partitioned into certain number of cells; Sec-
ondly, the number of received symbols is counted in each
cell. Obviously the counts are multinomial distributed; Fi-
nally the Hellinger distance is calculated for multinomial
distribution, which is nothing but a sum of square of the dif-
ference of some square roots. Once the partition is fixed,
the whole algorithm is extremely easy to implement.

We will describe our formulation of the problem in the
next section. In section 3, we describe our methodology
and some analysis. Section 4 gives two simulation results.
Finally, we conclude and illustrate future work in section 5.

2. PROBLEM FORMULATION

We assume an additive Gaussian noise model. Suppose the
signal is2-D modulated. So each symbol is a point on the
signal plane. The received noisy symbolsX1; X2; � � � ; XN

are samples from a distribution with density

fX(x) =
1

M

MX
i=1

 �;�(x);

whereM is the cardinality of modulation constellation, and
 �;� is a bivariate Normal density with mean� and covari-
ance matrix� � I2.

The modulation classification problem is to predict from
which distribution the noisy signal is sampled.

We gave some analysis of Hellinger metric geometry in
term of this setting [7]. Interested readers are referred to
that paper.

3. OUR APPROACH

3.1. Multinomial Approximation

Suppose there areK candidate modulation types, andf1,
f2, � � �, fK are their corresponding densities. Our approach
is as following:

1. Divide the signal plane intoL cells, count the number
of signals in each cell.Y1; Y2; � � � ; YL denote counts
for all the cells.



2. The Hellinger distance between the empirical distri-
bution and densityfi; 1 � i � K, is defined as

H2(f̂N ; fi) =

LX
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Yj=N �

q
f
(j)
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= 2� 2
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q
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q
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wheref (j)i =
R
cellj fi(x)dx. It is just the Hellinger

distance between two multinomial distributions.

3. The MHD classifier chooses minimizerk which sat-
isfies

H2(f̂N ; fk) = min
1�k0�K

H2(f̂N ; fk0):

3.2. Asymptotic Normality

Suppose there are only two candidate modulation types (K =
2) with corresponding densitiesf0 andf1. The classifica-
tion is determined by the sign of the test statistic

N = H2(f̂N ; f0)�H2(f̂N ; f1):

If N < 0, the modulation is classified asf0; Else, it’s clas-
sified asf1. The following is true (we state it without giving
proof):

Theorem 1 (Asymptotic Normality.) If the signal is from
the density functionf0, then

p
NfN +H2(f0; f1)g � Normal(0; �2HD); (1)

where�2HD = 1� (
PL

i=1

q
f
(i)
0 f

(i)
1 )2.

Based on the above result, for two hypothesis with cor-
responding Hellinger distanceH(f0; f1), roughly, it takes

N � Const.
�2HD

H4(f0; f1)

= (Const.)2 � 1�
1
4H

2(f0; f1)

H2(f0; f1)
;

samples to reliably distinguish them.

3.3. Robustness Analysis

Our approach is robust. One way to understand it is to con-
sider the break down point. The break down point of a test
is defined as the maximum proportion of contamination that
still makes the test consistent (asymptotically). Assume the

signal is fromf0, but"(0 < " < 1) of it is from an unknown
distributionH . The limit of test statisticN will be

�2
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q
f
(i)
1

�
: (2)

When it is less than zero, the test is consistent; Otherwise,
it’s inconsistent.

The following theorem says that the break down point of
Hellinger distance test is at leastH2(f0; f1)=f4+H2(f0; f1)g.

Theorem 2 (Break Down Point) Follow the same notation,
the expression in (2) is less than zero as long as

" � H2(f0; f1)=4

1 +H2(f0; f1)=4
: (3)

This is only a theoretical result. Soon we can see it is
very pessimistic. Because in digital communication, those
obvious outliers are easy to be excluded by preprocessing.
The above theory makes the assumption that the distortion
can be infinity. So the break down point given in (3) is very
conservative. From the simulations, we will demonstrate
the robustness in finite cases. It’s much better than we can
predict from (3).

3.4. Optimal Partition

All the discussion before is based on one type of partition.
A bad partition could make the test undoable. An opti-
mal partition should maximize the Hellinger distance in the
multinomial distribution situation. Because from theorem
1, largerH2(f0; f1) will make test easier; from theorem
2, largerH2(f0; f1) will bring a higher break down point.
Since

H2(f0; f1) = 2� 2
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maximizeH2(f0; f1) is equivalent to minimize
PL

i=1

q
f
(i)
0q

f
(i)
1 . The following three properties will be served as our

guidelines in partitioning the signal plane.

Property 1 Hellinger distance in continuous case is at least
no smaller than the corresponding Hellinger distance after
discretization.

Property 2 In cell i(1 � i � K), if the likelihood ratio
f0(x)=f1(x) is not constant, it will always be better(get a
larger Hellinger distance) to split this cell.

The next one is important in designing the partition of
the signal plane.
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Figure 1: Contour of likelihood ratio-QAM4 vs PSK6.

Property 3 Assume the two density functions,f0 and f1,
are continuous. Letx be on the boundary between celli
and cellj, andx is not adjacent to any other cells. Suppose

the partition minimize
PL

i=1

q
f
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0
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1 . The following

equality must be satisfied:
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0

:

So it’s always better to partition the signal plane along con-
tour of likelihood ratiof0=f1.

Armed with these results, we can proceed to design an
optimal partition for a real problem.

4. SIMULATIONS

We consider only two candidate modulation types—QAM4
and PSK6.

From Property 3, the optimal partition is to divide the
signal plane along contour of likelihood ratio. Figure 1
shows filled contours of likelihood ratio in the situation where
SNR is0; 5; 10, and15dB respectively. Note there are four
straight lines going through the origin. This pattern moti-
vates us to partition the signal planes by phase. This way of
partition coincides with the heuristic that phase is the most
important information to distinguish QAM4 from PSK6.

We can actually compute the Hellinger distance from
the continuous density functions and from the multinomial
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Figure 2: 100 noisy signals from QAM4 at SNR= 10dB.

density functions. They turn out to be roughly equal. So the
partition, then multinomial approximation, does not shrink
the Hellinger distance very much. Following the discussion
after theorem 1, the order of the sample size necessary for
reliably distinguishing these two modulations can be cal-
culated. For SNR= 0; 5; 10; 15; 20dB, the corresponding
sample sizes are roughly60000; 1000; 100; 30; 10.

A sample size of60000 implies that it is very difficult to
distinguish in applications. A sample size of10 means too
easy to distinguish. We choose to test the method at SNR=
10 and15dB, which are in the most interested range. The
signal lengthN are chosen to be100 and30 respectively.
At different SNR, the signal plane is divided into8 sectors
by four straight lines going through the origin. Each line
matches or is close to the contourf0=f1 = 1. Figure 2
gives an example of100 noisy signals from QAM4 at SNR
= 10dB. The solid lines shows how to partition the signal
plane.

Suppose the signal comes from QAM4. To demonstrate
the robustness of this method, we let a fraction of signal
generate from a channel suffering10dB SNR loss. The
fraction is called the “contamination percentage”. We let
the contamination percentage vary from0 up to0:45(45%).
For comparison, a likelihood method classification is done
in the same situation.

Figure 3 illustrates the mis-classification rate based on
1000 simulations. In both10dB and15dB situation, As
the contamination percentage rise, our method consistently
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Figure 3: Mis-classification rate in1000 simulations.

gives smaller mis-classification rates. When there is no con-
tamination, both methods yield a close to zero mis-classification
rate.

Another fact noteworthy is that the running time of our
method (Hellinger classifier) is about one tenth of the likeli-
hood ratio classifier. It is expected because our method only
involves counting and a small amount of arithmetic compu-
tation.

5. CONCLUSION AND FUTURE RESEARCH

We propose a new way of performing modulation classifi-
cation. It’s simple, easy to implement, fast(can be done in
real time) and robust. Simulations verify our conjecture.

In the future, we will test this method in other situations.
For example, testing for other pair of candidate modulation
types, testing for multiple hypotheses, etc.
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