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ABSTRACT

This paper presents a new direction for Chinese language modeling
based on a different concept of lexicon. Because every Chinese
character has its own meaning and there are no "blanks" in Chinese
sentences serving as word boundaries, also because the wording
structure in Chinese language is extremely flexible, the "words" in
Chinese are actually not well defined, and there does not exist a
commonly accepted lexicon. This makes language modeling very
sophisticated in Chinese language, and the "out of vocabulary
(OOV)" problem specially serious. A new concept for lexicon is
thus proposed in this paper. The elements of this lexicon can be
words or any other "segment patterns". They should be extracted
from the training corpus by statistical approaches with a goal to
minimize the overall perplexity. The language models can then be
developed based on this new lexicon. Very encouraging
experimental results have been obtained.

1. INTRODUCTION

The large vocabulary speech recognition technology has matured to
a certain extent in recent years. Almost all the techniques are more
or less word-based. The acoustic recognition is usually based on a
word pronunciation lexicon, i.e., matching between the acoustic
events in the utterances and the pronunciation of the words in a
lexicon is usually performed. The linguistic decoding, in the other
hand, usually operates under a word-based N-gram language model
or some similar variants, i.e., the contextual association relations
among words provide the most helpful constraints in finding the
output sentences. Such word-based approaches make very good
sense for western language, in which the words are well defined,
and the words in sentences are actually separated by "blanks"
serving as word boundaries.

The situation becomes quite different for Chinese language, which
is not alphabetic at all. There are huge number of Characters (more
than 10,000 are commonly used), almost each of which is an
ideographic symbol with its own meaning. A "word" is composed of
one to several characters, usually with a different meaning. Some of
the words are "compositional" with the characters, i.e., the meaning
of the word have to do with the meaning of the component
characters, such as the characters "� (big)" and "� (learning)"
forming a word "�� (university)", but some other words are
actually with the "ideographic" characters. Such as the characters "
� (harmony)" and "� (prefer)" forming a word "�� (monk)",
i.e., the meaning of the word is completely different from the
meaning of the component characters. Also, the wording structure
in Chinese language are extremely flexible. For example, a long
word can be arbitrarily abbreviated, such as "���� (Taiwan

University)" being abbreviated as "��", and new words can be
easily generated everyday, such as the characters "� (electricity)"
and "� (brain)" forming a new word "�� (computer)". All these
have to do with the fact that every character has its own meaning,
and thus they can play some linguistic role independently.
Furthermore, there are no "blanks" in Chinese sentences serving as
word boundaries. As a result, the "word" in Chinese language is
actually not well defined, and the segmentation of a sentence into a
string of words as definitely not unique.

The above phenomena makes language modeling (which is in
general word-based in western languages) much more sophisticated
for Chinese language. Since words are not well defined, there does
not exist a commonly accepted lexicon. Almost for any input texts
there always exist large number of "out of vocabulary (OOV)
words" regardless of how large a lexicon is used. Even if a fixed
lexicon is given, training a word-based language model requires the
whole training corpus being segmented into words at least
"consistently", if not necessarily accurately. Some people believe
the character-based language models can bypass the above different
problem. In fact, character-based models have been found very
useful for years. A good reason is that each character has its
meaning and therefore character-based N-grams do make sense.
However, it is also found that the capabilities of character-based
N-grams are in fact limited, since the words constructed by a few
characters very often carry different meanings, especially for the
large number of the "ideographic words" as mentioned above.
Apparently they can’t be modeled very well by character-based N-
grams unless N is large. In fact, the characters and words provide
"double level information" in Chinese languages. Therefore the
language modeling is significantly different from those for western
languages.

In this paper, an initial study toward a new direction to handle the
Chinese language modeling problem is presented. The language
model developed here is neither word-based, nor character-based.
A new lexicon is certainly needed. The elements in this new lexicon
can be either words, or phrases, proper nouns, compound words,
commonly accepted templates, etc., many of which are "out of
vocabulary (OOV)" for most conventional lexicons. Such elements
in this new lexicon are called "segment patterns" of characters in
this paper, and should be extracted form the training corpus from
the training corpus by statistical approaches, with a goal to find a
best set of elements for N-gram models which can minimize the
overall perplexity. The language models can then be developed
based on these "segment patterns". All the detailed algorithms to
extract the "segment patterns" and estimation of the N-gram
parameters are presented in the sections below. Preliminary results
on some initial experiments are also given. It was found that many
"out of vocabulary (OOV) patterns" can be obtained in this way, and



very good model performance can be achieved at a much smaller
parameter size, since many of the infrequently used words can be
actually deleted from a conventional lexicon. This approach also
leads to a "live lexicon", since the most updated new words or new
"segment patterns" can automatically be extracted from most
current test corpus.

2.  SEGMENT PATTERN EXTRACTION

This segment pattern extraction approach proposed here is based on
the average Kullback-Leibler distance [1] to extract the most
appropriate segment patterns from the training corpus. Both prefix
and suffix trees are constructed from the training corpus, such that
all character strings occurring in the training corpus can be stored
and retrieved very efficiently. In order not to obtain an undesired
local optimal solution, a two-phase approach is used, in which V+R
segment patterns are extracted in the first phase, and then the R
redundant or noisy segment patterns are deleted in the second
phase, such that a finite lexicon with V extracted entries will be
obtained, where V is the desired vocabulary size.

The initial lexicon for the extracted segment patterns is denoted as
L(0) = { u1=ch1,u2=ch2,…,uC=chC } where ui is the i th unit (or
segment pattern) in the desired lexicon, chi is the i th character in
Chinese language, and C is the total number of commonly used
Chinese character been considered. More segment patterns are then
extracted from the corpus and added to this lexicon. After i
iterations, total i segment patterns have been extracted, and the
lexicon becomes L(i) = {u1=ch1,u2=ch2,…,uC=chC,uC+1,…,uC+i},
where uC+i is i th segment pattern we extracted at the i th iteration.
The i th segment pattern uC+i obtained in the i th iteration is the
concatenation of two segment patterns in L(i-1) which can
minimize the overall perplexity. This is achieved as follows. Let
T(i) denote the set of all possible candidates for the (i+1)th segment
pattern to be added to L(i) to construct L(i+1) in the (i+1)th

iteration. Thus T(i) contain all possible concatenations of any two
segment patterns in L(i) except for those concatenations which
didn’t occur at all in the training corpus. Let tj = (uj,1,uj,2) be the jth

concatenation (or candidate) in T(i) where uj,1,uj,2 are the two
component segment patterns, the average Kullback-Leibler
distance for tj can be evaluated as follows, where (s1, s2,… sN) is a
string of segment patterns occurring in the training corpus, sk,
k=1,…,N, is any segment pattern in L(i), with one of them to be
replaced by tj.
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The numerator of the log term in eq (2) is the N-gram probability for
sN given history (s1, s2,… sN-1) if tj is in the lexicon and at the s1

position, and the denominator is the N-gram probability if tj is not in
the lexicon and therefore only uj,2 (the second part of tj) is
considered. So eq (2) gives the difference caused when tj is either
inside or outside of the lexicon. Similarly, eq (4) gives the distance
if tj is at the sN position, while eq (3) is for tj at sk position, where 1
< k < N. Therefore in the (i+1)th iteration, the distances d(tj) in eq
(1) are evaluated for all possible candidates tj in T(i). Assume to is
the candidate in T(i) which gives the maximal average Kullback-
Leibler distance, the (i+1)th segment pattern to be added to the
lexicon L(i+1) is then uC+i+1=to. This loop will be continued until
R+V patterns have been extracted.

In the implementation of this first phase, prefix and suffix trees
were used to make the computation more efficient. One can traverse
across the prefix and suffix trees to find all possible strings (s1, s2,…
sN) and estimate the necessary probabilities using the suffix tree
only. After a new segment pattern to = (uo,1,uo,2) was extracted and
added to the lexicon, these trees have to be reset so that all
connected nodes of (uo,1,uo,2) must be merged into to in both trees.
Besides, some heuristic rules can also be used to reduce the size of
T(i). For example, if the occurrence count a segment candidate tj in
the training corpus is smaller than a threshold, it can be ignored and
never considered.

The second phase is performed after all the sentences  in the
training corpus have been segmented based on the segment patterns
obtained in the first phase and the N-gram parameters are evaluated
accordingly. All these processes will be performed using a
forward-backward algorithm to be presented in section 3 below.
After that the new parameters thus obtained are needed to construct
a new set of prefix and suffix trees. Now under the new
environment based on the extracted segment patterns, the average
Kullback-Leibler distances as in eqs (1-4) are evaluated again for
all extracted segment patterns. r out of the V+R segment patterns
with lowest distances are then found and deleted. After this
procedure, the sentences in the corpus are re-segmented and the
N-gram parameters are re-estimated. This loop will continue until
all the R redundant or noisy segment patterns are deleted. Finally,
the lexicon with desired exactly V segment patterns is obtained.

3.  FORWARD-BACKWARD ALGORITHM
FOR SENTENCE SEGMENTATION AND N-

GRAM PARAMETER ESTIMATION

After a lexicon of segment patterns is obtained as described in the
above session, all sentences in the training corpus should be
properly segmented based on this lexicon and N-gram language
model parameters evaluated accordingly. For this purpose, a
forward-backward algorithm that has been used for other models
[2][4] was developed here to integrate the sentence segmentation
and parameter estimation processes together for segment pattern
N-gram model.

Let Si = (ui,1, ui,2,…, ui,N-1) denote the i th state in N-gram Markov
chain model λ,which is defined as a string of segment patterns
occurring in the training corpus, where ui,k, k = 1,…,N-1, is a
segment pattern obtained in the lexicon above, and l(Si), l(ui,k)
denote the character length (number of character) of Si and ui,k



respectively. Let Cm,n denote a sequence of Chinese characters,
Cm,n=(Cm,Cm+1,…,Cn). For a given sentence in the corpus C1,T =
(c1,c2,…,cT) with T characters, consider the forward variable αt(Si)
defined as

α λ
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given the Markov chain model λ, αt(Si) is the probability for a
character sequence C1,t,whose last l(Si) characters are exactly Si,
Ct-l(Si)+1,t=Si. We can solve for αt(Si) inductively as follows, where
Sj is any possible and legal state ( the first N-2 segment patterns of
Sj is the same as the last N-2 segment patterns of Si) that one can go
from Si to Sj in the Markov chain model λ for the given sentence
C1,T,
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Sinilarly, consider the backward variable βt(Si) defined as
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In other words, given the Markov model λ βt(Si) is the probability
for a character sequence Ct-l(Si)+1,T, where first l(Si) character are
exactly Si, Ct-l(Si)+1,t = Si. Again we can solve for βt(Si) inductively as
follows, where Sj is any possible and legal state in the model for the
given sentence,
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Moreover, we can now define γt(Si) as the probability with Ct-l(Si)+1,t

= Si given whole sentence C1,T and the model λ,
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We can write that
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Furthermore, we can define ξt(Si,Sj) as the transition probability
from Si to Sj at the tth and (t+1)th characters given the whole
sentence C1,T and the model λ,
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With all the above derivations, for the training corpus with
sentences set C={Ck}, where Ck is the kth sentence in C. The
probability of P( Sj | Si,λ ) at the mth iteration is estimated as follows
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If we denote [Si,Sj] as a string of N segment patterns, [Si,Sj]= (uij,1,
uij,2,…, uij,N), whose first N-1 segment patterns are exactly Si, i.e., Si

= (ui,1, ui,2,…, ui,N-1) = (uij,1, uij,2,…, uij,N-1), while whose last N-1
segment patterns are exactly Sj, i.e., Sj = (uj,1, uj,2,…, uj,N-1) = (uij,2,
uij,3,…, uij,N), then the numerator of (16) can be regarded as the
frequency count for the N-gram parameter [Si,Sj] = (uij,1, uij,2,…,
uij,N) occurring in the training corpus, and the denominator of (16) is
the count for Si = (ui,1, ui,1,…, ui,N-1) = (uij,1, uij,2,…, uij,N-1) occurring
in the training corpus.

4. EXPERIMENTAL RESULTS

In the preliminary experiments, we wish to evaluate the
performance of language models based on the new concept of
segment pattern lexicon developed here, and compare the results
with those using traditional Chinese character set and word lexicon
designed by Chinese linguists [3]. The training data used include 6
millions of Chinese characters. Three families of language models
are developed based on extracted segment patterns obtained here,
characters, and words provided by CKIP [3] respectively. The test
data include 500K Chinese characters. Both the training and test
data are taken from local newspapers provided by CKIP.

Language model perplexity is used as the performance measure. A
character-based perplexity [4] measure specially defined for
Chinese language is used here in order to achieve a meaningful
comparison among different families of language models. The
definition of the character-based perplexity is straightforward,
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where NC is the total number of characters in the testing data, and
the language model probability, P(Ck|λ), of a given sentence Ck is
calculated by (8) for the segment pattern models developed here.
Sparseness problem is inevitable when estimating the language
model probabilities for the test data. The discounting model [5] was
adopted to estimate the probabilities for unseen events.

In order to reduce the computation complexity in segment pattern
extraction, we confined the length the extracted segment patterns
within 4 Chinese characters, since it was observed that most of the
longer patterns can be decomposed into two or more smaller
patterns in Chinese language. In the processes of segment pattern
extraction, 163K segment patterns (including roughly 13K
characters, each of which is taken as a mono-character segment
patttern) were first extracted from the training corpus in the first
phase. The second phase of the processes then removed all the
unpromising patterns using the average Kullback-Leibler distance
criterion as discussed above, and a series of segment pattern
lexicons of size ranging from 33K to 113K for every 10K patterns
were generated.

The CKIP word lexicon [3], a Chinese lexicon specially designed by
Chinese linguists, is taken as the baseline for comparisons in our
experiments. This CKIP lexicon contains 94,188 word entries. It
was found that among our 100K extracted multi-character segment
patterns, only 33,111 patterns are also present in the CKIP word
lexicon, and the other roughly 67K of segment pattern are
meaningful phrases, proper nouns, compound words, commonly
used templates, and many new words not collected in the CKIP
lexicon. A nice feature of the approach is that the most updated
wording can almost be extracted automatically, as long as existing



in the training corpus. For example, a new word “�� (red for
long, which means high in stock market for long)”  which has been
frequently used only recently but not included in the CKIP word
lexicon, was extracted with very high priority.

In the first experiment, we compare the bigram and trigram
perplexities based on the segment pattern lexicon obtained here and
the words in CKIP lexicon. The result is shown in table 1. For
bigram language models, it can be found that the for the extracted
segment patterns perplexity decreases as the lexicon size is
increased from 33K to 83K, and then increases slightly when we
continue to increase the lexicon size. Similar situation happens in
the trigram case, and the lowest perplexity appears at the lexicon
size of 63K. The larger lexicon size does not bring more benefits
from higher coverage rates probably due to the sparseness of the
training data. Besides, for the bigram models, the segment pattern
based model is always better than the CKIP based model, even with
a much smaller vocabulary size, which implies much smaller
memory and computation requirements as well. However, for the
trigram models, performance difference seems to be very limited,
probably due to the same reason of the sparseness of the training
corpus.

In the second experiment, perplexities are calculated for character
based N-grams for N=2,3,4. The results and the number of
parameters required are listed in table 2. From this table, it can be
found that character based trigram model is significantly better than
the bigram model with a perplexity reduction on the order of 46%.
Since the average length for Chinese words is about 1.8 characters
as measured from CKIP data, the capabilities of character bigram is
certainly limited. By comparing tables 1 and 2, it is also observed
that the perplexity of character based trigram is roughly comparable
with that of the word based bigram models, but with at least 80%
more parameters. Similarly, the situation for character based 4-
gram can also be found in table 2, which does not performs as well
as the word trigram, but with much more parameters. This confirms
the concept mentioned earlier that language models based on
characters alone will be limited in capabilities in any case. Since
many of the words or segment patterns really carries more
information which is beyond the character level. As a result,
selecting a good set of words or including properly chosen segment
patterns in a lexicon will be a very critical task in Chinese language
modeling.

Finally, all models mentioned above are trained by the forward-
backward algorithm iteratively. The initial model at iteration 0 is
bootstrapped by segmenting the sentences into words or patterns

using a simple longest-match heuristic algorithm. Table 3 show the
perplexity versus number of iterations using the 83K segment
pattern lexicon as an example. It can be observed that the perplexity
begins to saturate at the second iteration. All the models mentioned
above have gone through such training process until the test data
perplexity is converged.

5. CONCLUSION

In this paper, an effective algorithm is presented to extract segment
patterns automatically from the training data to construct a lexicon
specially useful for large vocabulary speech recognition, with a goal
to minimize the overall perplexity. A forward-Backward training
algorithm is also proposed to integrate the sentence segmentation
and parameter estimation processes. In the experiments, very
encouraging results were obtained. It is thus believed that such
segment lexicon can preserve more important information to model
the Chinese language better, and at the same time much of the
redundant information can be deleted to reduce the parameter size.
Besides, such a lexicon can also be "live" to include the most
updated segment patterns extracted from most current text corpus.
This is only an very initial study. Much more further studies
regarding various issues of language models are certainly needed in
the future.
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CKIP Extracted Segment Pattern LexiconLexicon
94K 33K 43K 53K 63K 73K 83K 93K 103K 113K

Bigram 54.88 54.86 53.07 52.13 51.73 51.42 51.31 51.36 51.43 51.57
Trigram 43.22 43.54 43.32 43.19 43.11 43.24 43.68 44.25 44.97 46.02

Table 1. Character-based perplexity values of bigram and triigram Using CKIP word lexicon and the extracted segment
pattern lexicons with different sizes

Character Based N-gram CKIP Word Based N-gram
Model Order

Bigram Trigram 4-gram Unigram Bigram Trigram
PP 97.99 52.74 47.81 150.36 54.88 43.22

Parameter No. 0.5M 1.8M 4.3M 43K 1.0M 2.8M
Table 2. Character-based perplexity of character N-gram and word N-gram using CKIP lexicon

Iteration 0 1 2 3 4 5
PP 52.74 51.48 51.33 51.32 51.31 51.31

Table 3. Perplexity of pattern bigram for 0-5 iterations
using extracted lexicon with 70K patterns, where
longest-match rule is used at iteration 0.


