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ABSTRACT

In this paper, we present a video chrominance subsampling
method using feedforward neural networks. Experimental
results show that our method outperforms spatial subsam-
pling obtained via lowpass filtering and decimation both ob-
jectively and subjectively. Other advantages of our algorithm
are computational efficiency and low memory requirements.
Moreover, no pre– or post–processing is required by our me-
thod.

1. INTRODUCTION

In color video coding, chrominance frames are usually sub-
sampled, while the luminance component is not changed.
This is possible due to the lower sensitivity of the human vi-
sual system to color information, as compared to the sensi-
tivity to the luminance information [1], [2]. Prior to down-
sampling, signal conditioning in the form of lowpass filte-
ring is commonly performed [3]. When applied to color vi-
deo sequences, traditional lowpass filtering produces visi-
ble artifacts in the reconstructed video sequence. In order
to minimize such artifacts, chrominance subsampling using
feedforward artificial neural networks (FANNs) is proposed.
We show that good objective/subjective results can be ob-
tained with our pattern matching algorithm. The rest of the
paper is organized as follows. The next section provides a
brief description of our algorithm. Experimental results and
conclusions are given in the last two sections.

2. FANN–BASED SUBSAMPLING ALGORITHM

Let the feedforward neural network (FANN) model be anM–
H–N multilayer perceptron, i.e. withM input,H hidden
andN output nodes [4] and letN = 1. The input image is
stored as a matrix of samples, each matrix element represen-
ting a pixel value. AW � W window slides over the en-
tire image, producingM � 1 input vectors. Foreach input
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window (pattern)�, the FANN computes weighted sums of
input values, passes them as arguments to nonlinear activa-
tion functions and outputs the actual valuey (�). During su-
pervised training, the actual output value is compared with
the desired outputd(�), the errore(�) is computed and the
FANN parameters are adjusted so that the chosen cost func-
tion (usually the sum of all squarede(�)’s) is minimized. Ifp
M=N is an integer greater than one, the FANN multilayer

perceptron structure inherently performs subsampling. How-
ever, computing the errore(�) for each input pattern� as
mentioned above does not take intoaccount the local cha-
racteristics (e.g. edges) inside of the current window. There-
fore, some artifacts tend to appear in the reproduced frames.
In order to avoid artifacts, we propose a supervised strategy
to select the desired output value for the current input win-
dow. In the following,we summarize theproposed algorithm.

First, we compute the actual output valuey(�) for each
input pattern�. Second, we compute the medians of all pos-
sible three–pixel combinations given by the intersection be-
tween the diamond (cross) shaped pattern shown in Figure
1, sliding over the search window, and the input window.
We compare these median values with the fourth pixel in the
window. Then, the pixel which is theclosest to themedian of
the other three pixels is selected as the desired output value
for the current input window. Fourth, we compute the global
error at the end of one epoch1 as

C (w) = 1
2P

PP

�=1 [d (�) � y (�)]
2

whereP is the total number of input patterns andw is the
FANN weight (parameter) vector. Finally, we adjust all the
weights according to a quasi–Newton rule. In this work, we
have used the Levenberg–Marquardt approximation of the
inverse Hessian matrix and a learning rate as given in [4].
The steps of the algorithm are repeated until the value of the
error drops below a selected threshold or, until a predefined
number of epochs is exceeded. Then, the FANN parameters
are saved and used during the testing step. More details on

1Defined as onepass through theP–dimensionalset of training patterns.



the above algorithm can be found in [5].
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Figure 1: ONE OF THE PATTERNS GIVEN BY THE INTER-
SECTION BETWEEN THE DIAMOND(CROSS) SHAPED PAT-
TERN (SLIDING OVER THE SEARCH WINDOW) AND THE

INPUT WINDOW.

3. EXPERIMENTAL RESULTS

3.1. Implementation details

The block diagram of a chrominance subsampling system is
shown in Figure 2. In the first experiment, two4–2–1FANN
structures (one for the U frames and one for the V frames)
were trained on a data set consistingof standard QCIF chromi-
nance video frames fromthe sequences CLAIRE (frame 490),
GRANDMA (frame 490), SALESMAN (frame 49), MISSAME-
RICA (frame 49) and SUZIE (frame 49). Each of the FANNs
was tested on chrominance frames from the sequences TRE-
VOR and MOTHER–AND–DAUGHTER. In the second expe-
riment, two4–8–1 FANN structures (one for the U frames
and one for the V frames) were trained on a data set consis-
ting of the first 10 chrominance frames from the standard se-
quences AKIYO , COASTGUARD and STUDENTS. The data
set consisted of the first frame of each sequence, followed by
the second frame of each sequence, etc. Each of the FANNs
was tested on chrominance frames 100 to 250 from the se-
quence PARIS.

The size of the input window, the evaluation criteria and
the other methods used in our comparisons, are important is-
sues that need to be specified. In both experiments we have
chosen a2 � 2 window, moving one pixel to the right. The
window was non–overlapping in the first experiment and o-
verlapping the second experiment. We have chosen to eva-
luate the performance of our algorithm by(a) visual exami-
nation of the subsampled frames [6],(b) visual examination
of the subsampled and cubic interpolated frames and(c) ob-
jective evaluation of the subsampled and cubic interpolated
frames, based on peak signal–to–noise ratio (PSNR), mathe-
matically given by

PSNR = 10 log10

�
2552

MSE

�
, where

MSE = 1
Q1 Q2

P
(xi;j � x̂i;j)

2, and

x̂i;j are the pixel values in theQ1�Q2 reconstructed image.
The results were compared to the thoseof the spatial lowpass
filtering followedby quincunx subsampling (LPFS) method,
for three 2–D filters: LPF1, which was designed via frequen-
cy sampling, LPF2, which was a separable finite response
filter (FIR) designed using separable 2–D windows, and
LPF3, which was a nonseparable FIR designed with 2–D win-
dows. All of the filters have an order of 11 and a cutoff fre-
quency equal to 0.5.

3.2. Performance and complexity of our algorithm

In the first experiment, gray level reproduction of the sub-
sampled chrominance frame 75 of the TREVOR sequence
shows that the FANN frames are the closest to the original
chrominance frames, as illustrated in Figure 3. The dynamic
range of the original U and V frames was[79 : : :125] and
[122 : : :181], respectively. While the FANN maintains the
dynamic ranges[79 : : :122] and[120 : : :176] for U and V,
respectively, theLPF outputsvalues in the ranges[37 : : :131]
and[49 : : :186] for U and V, respectively.

Then, we applied the FANN chrominance subsampling
system to the U and V frames and encoded the QCIF test se-
quence MOTHER–AND–DAUGHTER (150 frames) using Te-
lenor’s H.263 video coder [7]. Both the PSNR values and vi-
sual quality of the obtained video sequence have been com-
pared to the original ones, as well as to those given by the
LPFS method. Several subjective evaluations of the decoded
video sequence indicate that artifacts are present when chro-
minance frames have been lowpass filtered, while they are
non–existent in the FANN subsampling(FANNS) case. Quan-
titative evaluation in terms of MSEs and PSNRs, for rates of
8 kbits/sec and 24 kbits/sec is given in Table 1. For rates be-
tween 4 kbits/sec and 32 kbits/sec, in steps of 2 kbits/sec, the
results are displayed in Figure 4. The FANN gain is signi-
ficant at low bit rates (1.9246 dB at 4 kbits/sec), and drops
at higher rates (0.65 dB at 32 kbits/sec). The PSNR was ob-
tained by:

PSNR = 4 PSNR(Y )+PSNR(U)+PSNR(V )
6 :

In the second experiment, we applied the FANN chromi-
nance subsampling system to the U and V CIF frames, then
encoded the resulting YUV sequences at the rate of 24 kbits/
pixel for the frames 100 to 250 of the sequence PARIS, u-
sing Telenor’s H.263 video coder [7]. Next, we decoded the
sequence and performed cubic interpolation. The PSNR va-
lues of the resulting frames w.r.t. the original chrominance
frames are presented in Figure 5. On average, the FANNS
outperforms the LPFS by 0.88 for the U frames and by 1.12
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Figure 2: BLOCK DIAGRAM OF THE CHROMINANCE SUBSAMPLING SYSTEM.

Original chrom. (V) frame FANN sub−sampl.+interp. LPF1+sub−sampl.+interp.

Original chrom. (U) frame FANN sub−sampl.+interp. LPF1+sub−sampl.+interp.

Figure 3: GRAY LEVEL REPRESENTATION OF THE CHROMINANCE FRAMES.

Table 1: PSNRs [dB] for different coding rates (8 kbits/sec and 24 kbits/sec),
when using Telenor’s H.263 video coder. AcronymsFANNSI; LPFSI stand
for FANN subsampling and LPF subsampling, both followed by cubic interpola-
tion.

Method 8 kbits/sec 24 kbits/sec
Y U V Y U V

FANNSI 30.878 37.214 37.381 34.295 39.768 39.610
LPF1SI 30.434 32.838 33.045 33.938 38.031 38.168
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Figure 5: PEAK SIGNAL–TO–NOISE RATIO [DB] ON CHROMINANCE FRAMES100
TO 250 OF SEQUENCEPARIS USING TELENOR’ S H.263 VIDEO CODER AT 24
KBITS/SEC.
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Figure 4: PEAK SIGNAL–TO–NOISE RATIO [DB] W.R.T.
RATE IN LOW BIT RATE EXPERIMENTS USING TE-
LENOR’ S H.263VIDEO CODER.

for the V frames. Subjective evaluation of the sequences in-
dicates finer details in the FANNS sequences, as compared
to the LPFS ones.

Finally, the speed of our FANN–based subsampler is eva-
luated by the test time on an UltraSparc 2 computer. The
FANN requires only 0.12 seconds CPU time per QCIF frame,
as compared to 5.5 times more, needed by the LPF method.
Moreover, the designed FANNs feature memory require-
ments comparable to those of the LPFs, which makes our
neural subsampling system well–suited for real–time appli-
cations.

4. CONCLUSIONS

In this paper, we have presented a subsampling algorithm
and we have applied it to chrominance subsampling of video

sequences. We have also presented experimental results for
FANNS trained on single frames from different sequences
(first experiment) and for FANNS trained on several frames
from distinct sequences. Test results show that our method
(a) leads to good objective and subjective video reproduc-
tion quality,(b) is computationallyefficient,(c) has low me-
mory requirements and(d) requires no pre– or post–proces-
sing. Our results outperform spatial subsampling obtained
via the lowpass filtering and decimation method.
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