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ABSTRACT

This paper describes a lightweight method for the auto-
matic insertion of intra-sentence punctuation into text. De-
spite the intuition that pauses in an acoustic stream are
a positive indicator for some types of punctuation, this
work will demonstrate the feasibility of a system which re-
lies solely on lexical information. Besides its potential role
in a speech recognition system, such a system could serve
equally well in non-speech applications such as automatic
grammar correction in a word processor and parsing of spo-
ken text. After describing the design of a punctuation-
restoration system, which relies on a trigram language
model and a straightforward application of the Viterbi al-
gorithm, we summarize results, both quantitative and sub-
jective, of the performance and behavior of a prototype sys-
tem.

1. INTRODUCTION

The requirement that conventional speech dictation sys-
tems impose on the user to enunciate punctuation can of-
ten be an annoyance and in some situations even an im-
possibility.  “Speaker-unaware” transcription systems, in
which the speaker doesn’t know (or care) that he is speak-
ing to a dictation system, are one setting in which the
enunciated-punctuation requirement cannot be enforced.
For instance, a broadcast-news transcription system (In-
formedia [5], for example) cannot rely on the speakers to
pronounce “comma” or “semicolon” wherever necessary in
the transcribed text. Telephony and other remote speech
applications (such as the answering system described in [6])
share the injunction against requiring the user to speak un-
naturally. Ultimately, we imagine that all speech recogni-
tion systems will automatically insert punctuation as accu-
rately and efficiently as a professional transcriptionist. The
system we propose is, so far as we know, a first step in that
direction.

Figure 1 depicts how a punctuation-restoration system
could be incorporated into a conventional dictation system.
The user’s dictated speech is the input to the system; it
passes through a conventional (punctuation-free) dictation
system, which produces an N-best list, whose entries lack
punctuation. A post-processing step then adds punctuation
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to each hypothesis by applying a trigram model “extended”
from the baseline model to account for punctuation. A
new N-best list, sorted by score assigned by the extended
language model, is the final output.
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Figure 1: Automatic insertion of punctuation in a speech
dictation system.

The paper will proceed as follows. After reviewing re-
lated work in Section 2, we describe the decoding algorithm
in Section 3. A strict comparison of the output of a proto-
type system® against a reference corpus is of dubious value
in settings such as these, where multiple correct answers ex-
ist. We address this issue by reporting in Section 4, along-
side the standard statistical benchmarks of precision, recall
and exact match, the results of human evaluation of the
system’s performance.

LAn interactive demonstration of the system is online at
http://www.link.cs.cmu.edu/cyberpunc



2. BACKGROUND

Punctuation has thus far received scant attention from the
speech community, despite the obvious ergonomic advan-
tage of a dictation system that frees the user from pro-
nouncing it.

Though we are aware of no prior work on predicting
punctuation in the lexical stream, variations of the phrase
breaking task have received considerable attention. Noun
phrase bracketers and “chunkers” [4, 2] are useful in appli-
cations that require some level of phrase-level segmentation
but cannot afford the resources required by a full-blown
parser. The intelligibility of a text-to-speech system, for
example, depends partly upon its ability to assign convinc-
ing intonation to regions of the input sentence and to insert
pauses where appropriate [3]. Phrase breaking algorithms
typically use part-of-speech n-gram models or the Viterbi
algorithm to predict the bracketing defined in a corpus of
parse trees.

Symbol | Frequency
, 1.65%%
. 4.174%
“ 1.398%
() 0.211%
? 0.0389%
! 0.00520%

Table 1: Some common punctuation symbols in the 42 mil-
lion token Wall Street Journal corpus, and their frequencies.

For the remainder of this paper we shall focus on the
comma, the most frequent and unpredictable punctuation
mark (Table 1). The comma exhibits a wide range of ap-
plications in text (Table 2), and disambiguating a comma’s
role in a sentence is a separate issue [7] from identification,
the focus of this paper.

Other intra-sentence punctuation marks may be
amenable to an approach similar to the one we present,
although 1t can be argued that sentence-terminating punc-
tuation such as question marks and exclamation marks re-
quire substantially more semantic insight [10].

3. DECODING

The comma-restoration algorithm relies on a punctuation-
aware trigram language model Q. Below we describe how
such a model can be constructed from a trigram model P
without punctuation, using minimal space.

The input to the comma-restoration algorithm is a sen-
tence X = xox1%2...%y, lacking commas; the output is a
sentence y = YoY1Y2 ... Yntc containing the same words
and ¢ > 0 commas inserted in a subset of the n — 1 intra-
word positions of x. We entertained two different decoding
strategies, both of which consider as candidate decodings
all 27! possible hypotheses.

3.1. No insertion-penalty decoding

The first algorithm, which we denote by Algorithm A, cal-
culates

n+c

y" = argmax, H q(ys | Yi—2yi—1), (1)
1=0

where q(y: | yi—2yi—1) is the trigram model probability as-
signed by the model @ to word y; following the bigram
Yi—2yi—1. Finding y* can be accomplished with an ap-
plication of the Viterbi algorithm; a sample lattice is de-
picted in (2b), with the transition probabilities given by
the (punctuation-aware) trigram model probabilities of Q.
A rather more succinct perspective is provided by figure
(2a), the finite-state machine governing the transitions in
the trellis.

3.2. Insertion-penalty decoding

Algorithm B is similar to A except that not hypothesizing
a comma in the i’th position now has a “cost” of 1 — ¢(, |
yiyi—1). That is, we seek

n+c

y" = argmax, H q(yi | yi—2ys—1)(1 — q(, | yi—2yi—1))6(y’) (2)
1=0

where
N_) 0 y=,
8(yi) = { 1 otherwise

In this approach, the score of each hypothesis is the product
of 2n — 2 probabilities, whereas in Algorithm A, the score of
a hypothesis with ¢ commas is the product of n—1+c¢ prob-
abilities. One could view this model as an HMM with two
states and with output-dependent transition probabilities
given by Q.

3.3. Constructing a punctuation-aware LM

We have made the claim that the proposed system is
lightweight. Yet it requires, in addition to the punctuation-
free language model P already present in a speech dictation
system, a second trigram model @Q, trained on data with
punctuation. But given a trigram model P, one can realize
a model Q using a small number of additional parameters.

The method of extending P involves introducing a set
of “corrective” parameters A(wi, wz), where A(w1, w2) is an
estimate of the probability of a comma following the bigram
(wl7 w2). Just as the counts in a standard trigram model
are sparse, so we can be sure that only a small number
of parameters will be necessary to account for A(-). For
the experiments reported in section 4, for instance, we used
a trigram model which contained 1,265,577 trigrams; of
these, only 185,420 (14.7%) contained commas.

Defining Z = p(y | y—2y—1)+A(y—2y—1), the probability
of the extended model Q is given by

Z_l)\(y—2y—1) y is a comma
Z7'p(y | y—2y—1) otherwise

q(y | y—2y—1) = {



Textual role

Example

Around adverb phrases
Between independent clauses
Around coordinate clauses
Enclosing appositives
Between elements in a series
Before and after quotation marks
Within dates
Within places

At the time, Mr. Gatward said his friendship...

...keep an eye on the stock market, because “if the stock market rallies...
Institut Merieux, which already holds an eleven percent stake, is...
Roger Sutton, executive vice president, was appointed...

While claiming that penalties, legal fees and interest have driven the value...
...“Maybe Akzo can surprise the investment world a bit,” said Jaap Visker...
...postmarked no later than Sunday, Oct. 7, and...

...a vaccine and bioresearch firm based in Lyon, France, is...

Table 2: The most frequent roles of the comma in the Penn Treebank corpus.
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Figure 2: (a) The finite state machine underlying the three-
state Viterbi decoder for the comma symbol; (b) The lattice
for a sample sentence, with the Viterbi path highlighted.

4. EVALUATION

To evaluate our systems empirically, we selected the Penn
Treebank corpus [8] of sentences from the Wall Street Jour-
nal. We used the standard 2317-sentence test suite stripped
of all punctuation. We ran the decoding algorithms de-
scribed above to produce punctuated output that was then
compared with the original test set. The results for our
algorithms and for the strategy of never hypothesizing a
comma are summarized in Table 4.

As expected, decoding with a gap insertion penalty (Al-
gorithm B) increased precision but lowered recall over Al-
gorithm A. This can be explained by B’s relative conser-
vatism in hypothesizing a comma. Although it has poorer
F-measure performance, Algorithm B nonetheless achieved
higher sentence (exact match) accuracy. We feel that sen-
tence accuracy is more indicative of real-world utility, since
there is some overhead associated with correcting system
errors if any mistakes are made at all.

4.1. Qualitative evaluation

The most valuable qualitative metric of success for a speech
recognition system is user satisfaction. Accordingly, we
would like to gauge how satisfying the punctuation choices
of our system are. (Whether grammatical rules and conven-
tions leave no ambiguity in comma placement is beside the
point. The acceptability of our system hinges on whether
its decisions align with the user’s tastes.)

We applied Algorithm B to 100 sentences drawn ran-
domly from the test set. The resulting machine-punctuated
sentences where randomly intermingled with the original
100 sentences with the punctuation as they appeared in
the Treebank. We then asked human judges to label each
sentence in this 200-sentence list as acceptable or not with
respect to comma placement.

Six judges of varied background participated in the eval-
uation. The results, summarized in Table 4.1, indicate that
the performance of our system is qualitatively higher than
the sentence accuracy rate would indicate.

5. CONCLUSIONS

We have presented a lightweight method for the automatic
insertion of intra-sentence punctuation into text which re-
lies exclusively on lexical information. Despite being quite
straightforward in design, the system performs surprisingly
well in most circumstances. Not surprisingly, the system
performs poorly when the presence or absence of punctua-
tion requires long-range lexical information to resolve. For
instance, the prototype system correctly identifies the first
comma in the following sentence, but not the second: Brazil
similar to Mexico and South Korea is expected to negotiate.

Resolving such ambiguities lies beyond the scope of a
second-order Markov model, and requires a model with
richer conditioning information such as a trigger language
model, described in [1]. Higher-order information—such as
the parts of speech assigned by a tagger or even the struc-
ture of a parse tree hypothesized by a statistical parser—
could also provide such long-range information, but at the
expense of a less lightweight system. We are currently devel-
oping more sophisticated punctuation restoration schemes
along these lines.



Algorithm | Sentence accuracy | Precision | Recall | F-measure | Token accuracy
A 53.3% 75.6% 65.6% 70.2% 96.6%
B 54.0% 78.4% 62.4% 69.4% 96.6%
none 32.9% 100.0% 0.0% 0.0% 93.8%

Table 3: Performance of three comma placement algorithms on the Penn Treebank test data. Algorithm A is the Viterbi
3-state decoder without the insertion penalization described in Section 3. Algorithm B is the 3-state decoder with insertion

penalization. The “none” algorithm hypothesizes no commas at all. F-measure is a weighted combination of precision P
and recall R, 1231:’_—1;.
Decoder/reference agree || Decoder/reference disagree Overall
right wrong right wrong right wrong
Reference 289 35 226 50 86% 14%
Decoder 289 35 107 169 66% 34%

Table 4: Results of human evaluations. Six human judges were asked to evaluate a set of 200 sentences, 100 of which
were a machine punctuated versions of the original sentences from the treebank corpus. The total counts are given for the
evaluations, divided into those sentences for which the corpus and machine punctuation agreed, and the set where they
disagreed.
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7. SAMPLE OUTPUT

The Viterbi decoder produces, in most cases, quite reason-
able output. Below we provide a randomly interleaved col-
lection of sentences blindly selected from the decoder output
and from the Treebank itself. The reader is invited to dis-
tinguish between treebank (R) and decoder (D) sentences;
the results are provided in a footnote®

1. And although Pennsylvania and Massachusetts suffered
slight declines earlier in the decade, they are growing again.
2. China, which had been putting in huge orders for
polyethylene, abruptly halted them.

3. CNN recently gave most employees raises of as much as
15%, but they’re still drastically underpaid compared with
the networks.

4. Meanwhile, during the S&P trading halt S&P futures
sell orders began piling up, while stocks in New York kept
falling sharply.

5. At the time, Hertz said its annual fees to those airlines
amounted to $20 million.

6. Japan, the EC Brazil, Mexico and South Korea provide
about 80% of the steel imported to the U.S. under the quota
program.

7. The account had billed about $6 million in 1988, accord-
ing to leading national advertisers.

8. Many interpret the delay as an indication that regulators
are skeptical about the proposal.

9. In the hands of a zealot like Lenny Bruce this double-
edged blade could cut both the self and the audience to
ribbons.

10. Do not say the TV sitcom, because that happens to be
a genre that, in its desperate need to attract everybody and
offend nobody, resembles politics more than it does comedy.

21.D,2.R,3.R,4.D,5.D,6. D, 7. R, 8 R,9. D, 10. R.



