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ABSTRACT

We investigate joint source channel coding for channels with
intersymbol interference (ISI) where the source coder is a
vector quantizer. In our previous work we used a block
MAP equalizer, which takes into account the residual cor-
relation between the VQ outputs and also provides for soft
decisions to improve the performance. In this paper we
propose the use of a vector channel approach and discrete
multitone modulation for joint source channel coding on
channels with ISI. Using these modulation procedures, in-
tersymbol interference can be eliminated and the problem
of joint source channel coding for ISI channels is reduced to
the problem of coding for vector Gaussian channels. Op-
timization of the signal set is performed through optimal
power allocation to the subchannels. Simulation results are
presented for both vector and discrete multitone channels
and compared to the results obtained by using the block
MAP equalizer and to the OPTA (optimum performance
theoretically attainable) bound.

1. INTRODUCTION

Under complexity constraint, joint source channel coding
results in lower distortion than the separate source and
channel coding. Recently, there has been an increased in-
terest in channel optimized vector quantization (COVQ), in
which the design of a vector quantizer and the associated
receiver incorporate known channel error characteristics. It
reduces the code design to an optimization problem and
results in simple decoding procedures. Both discrete mem-
oryless channels (DMC) [3, 4] and Gaussian channels [5]
have been considered. In our previous work [1, 2, 6, 11]
we have addressed the transmission of a vector quantized
Gauss-Markov source over discrete channels with intersym-
bol interference. We considered soft decision decoding us-
ing a MAP symbol by symbol detector [7] that accounts for
residual source redundancy.

In [2] we derived a recursive block MAP algorithm for
multidimensional modulation implemented as time division
multiplexing (TDM) over a channel with intersymbol in-
terference. In [1] and [2] we designed COVQ using chan-
nel error matrices obtained through simulating the MAP
decoder. We have also implemented constrained VQ tech-
niques for channels with ISI, such as a channel-matched tree
structured vector quantizer in conjunction with a reduced
complexity block MAP algorithm [6].

Recently, joint source channel coding for an orthogo-
nal frequency division multiplexing (OFDM) [8, 9] system
has been reported [10]. BPSK modulation is used, and the
subchannels are modeled as binary symmetric channels; ISI
is not considered. The transmitted power is distributed
among subchannels to minimize the channel distortion, pro-
viding unequal protection to vector indices. We have used
the FDM approach with a small number of subchannels to
design COVQ in [11], where we again used a block MAP
equalizer and also performed an optimal power allocation
to the subchannels.

Holsinger [12] showed that orthogonality of the sub-
band signals through a distorted channel can be achieved by
using the eigenfunctions of a channel auto-correlation func-
tion as \carriers". This approach is attracting considerable
interest [13, 14], since DSP has enabled the implementation
of this procedure in the discrete-time domain using matrix
decomposition methods. The theory behind the continuous
time approach has been extensively explained in [15]. The
problem of transmitting a signal through a frequency selec-
tive channel is equivalent to transmission through a vector
Gaussian channel in which the eigenfunctions of the channel
correlation function form a basis for the signal space and
the channel scales each dimension in this signal space by the
square root of the corresponding eigenvalue. The receiver
consists of a bank of �lters matched to the output eigenfunc-
tions of the channel correlation function. Slightly di�erent
is the discrete multitone modulation (DMT), where the ba-
sis functions are complex exponentials, and the DFT of the
channel impulse response coe�cients are used instead of the
square roots of the eigenvalues. Both approaches eliminate
ISI, but not interblock interference (IBI), which is removed
using a preamble or a decision feedback equalizer.

In this paper we use a vector channel model which pro-
vides a solution to joint source channel coding for frequency
selective channels, reducing the problem to that of joint
source channel coding on Gaussian vector channels. We de-
rive this channel model using singular value decomposition
(SVD). We then study a DMT channel model, which can be
also considered as a Gaussian vector channel. We develop
optimal encoder, signal set and receiver designs for both
channel models under a total transmitted power constraint.
To reduce complexity, we design a number of COVQ's and
signal sets for groups of subchannels. We perform an opti-
mal power allocation to the subchannels in each group, in
order to use the \good" subchannels more e�ciently.



2. OPTIMAL ENCODER AND DECODER DESIGN

We assume a zero-mean stationary discrete time Gauss-
Markov source given by an auto-regressive model. Let xn
be a k-dimensional vector obtained from this source with
probability density function denoted by p(xn). The vector
xn is mapped into a VQ codeword chosen from the set of
k-dimensional vectors c1; : : : ; cN . The number of codebook
vectors is N = 2kR where R is the source rate. Denote 
i as
the VQ encoding region: si will be transmitted if xn 2 
i.
Here si is a point in a 2p-dimensional constellation, given as
si = [s1i ; � � � ; spi ], where sji ; j = 1; � � � ; p are signal points in
M -ary two-dimensional subconstellations. The transmitted
signal at time n is un = [u1n; u

2
n; : : : ; u

p
n].

Denote the signal used by the decoder at time n as
zn = [z1n; : : : ; z

p
n]. The receiver computes the minimum

mean-squared error (MMSE) estimate x̂n of xn, which is
the conditional expectation of xn, given zn

x̂n = E[xnjzn] =
NX
i=1

cip(un = sijzn)

=

PN

i=1
ciP (un = si)p(znjun = si)PN

i=1
P (un = si)p(znjun = si)

(1)

where ci are the centroids of the region 
i:

ci =

R

i

xnp(xn)dxnR

i

p(xn)dxn
(2)

To design the COVQ we use the process described in
[2, 6], which is based on [3]. In this process we approximate
the vector channel as a DMC whose error probabilities are
denoted Pc(jji) = P (ûn = sj jun = si), where ûn is the
maximum likelihood estimate of un; Pc(jji) can be com-
puted from the vector channel model. The encoder design
is performed by iterating between

ĉj =

PN

i=1
Pc(jji)

R

i

xnp(xn)dxnPN

i=1
Pc(jji)

R

i

p(xn)dxn
(3)

for j = 1; : : : ; N and


i = fx :

NX
j=1

Pc(jji)kxn�ĉjk2 �
NX
j=1

Pc(jjl)kxn�ĉjk2; 8lg

(4)
for i = 1; 2; : : : ; N , until convergence. These equations are
obtained by minimizing the distortion

D =
1

k

NX
i=1

NX
j=1

Pc(jji)
Z

i

p(xn)kxn � ĉjk2dxn (5)

which approximates the actual distortion with the accuracy
of the DMC approximation to the vector channel.

3. VECTOR CHANNELS

The input-output relationship of a discrete-time linear time-
invariant dispersive channel corrupted by additive noise is

yk =

�X
m=0

hmvk�m + wk (6)

where fhmg�m=0 are the channel impulse response coe�-
cients. The noise samples wk come from a proper complex
zero mean Gaussian process with variance �2.

By considering transmission of blocks of size L and
omitting the block index n, we have

y = Hv+w (7)

y = [yL�1; yL�2; : : : ; y0]
0, v = [vL�1; vL�2; : : : ; v0; : : : ; v�� ]

0,
w = [wL�1; wL�2; : : : ; w0]

0 andH is the L�(L+�) channel
matrix:

H =

2
664

h0 h1 � � � h� � � � 0
0 h0 � � � � � � � � � 0
...

...
...

...
...

...
0 0 � � � h0 � � � h�

3
775 (8)

It is easy to show that the rank of this matrix is L. We
perform a SVD [16] on H:

H = �
�
� 0

�
	H (9)

where � is unitary matrix of rank L and the columns of
� form an orthogonal basis of eigenvectors for HHH . The
eigendecomposition of HHH is HHH = ��2�H . De�ne
	 = [	1;	2], and 	1 = HH���1, so that the columns of
	1 are orthonormal to each other. We obtain �HH	1 =
�. Notice that the matrix �2 is a diagonal matrix of the
eigenvalues of HHH . The matrix � = diag(�0; � � � ; �L�1) is
the matrix of the positive square roots of these eigenvalues.
We also have

H
H
H = 	diag(�20 ; : : : ; �

2
L�1; 0; : : : ; 0)	

H (10)

The mutual information I(V;Y) is maximized when the
eigenvectors ofRv = E[vvH ] are matched to those ofHHH.
If we use the columns of 	 as the waveforms for signal-
ing, and the conjugates of the columns of � for demodu-
lation in a correlation receiver, which uses biorthogonality,
the e�ect of the channel is just to scale each element of
the input by �i. Denoting ue = [uL�1; uL�2; � � � ; u�� ]0,
u = [uL�1; uL�2; � � � ; u0]0 and z = �Hy as a column vector
of processed samples used for detection

z = �H
y = �H(Hv+w) = �H(H	ue +w)

= �H�[� 0]	H	ue +�H
w

= �u +�H
w (11)

The components of �Hw are uncorrelated and with vari-
ances equal to the variance (power) in wk since the ma-
trix � is unitary. Figure 1 summarizes this vector channel
structure. Note that a preamble of length � is necessary to
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Figure 1: Block diagram of the vector channel

eliminate interblock interference.



The DMT channel is similar to the vector channel; for
DMT we use complex exponentials as waveforms to trans-
mit the information symbols. We modify the notation used
for the vector channel: ue = u = [u0; : : : ; uL�1]

0, v =
[v0; : : : ; vL�1]

0, y = [y0; : : : ; yL�1]
0, w = [w0; : : : ; wL�1]

0,
z = [z0; : : : ; zL�1]

0. The block of channel outputs is ob-
tained by multiplying v by the circulant L� L matrix H

H =

2
664

h0 0 � � � 0 h� h��1 � � � h1
h1 h0 � � � 0 0 h� � � � h2
...

...
...

...
...

...
...

...
0 � � � 0 h� h��1 � � � h1 h0

3
775
(12)

Denoting the DFT of [h0; : : : h� ; 0; : : : ; 0]
0 by [H0; : : : ; HL�1]

0

we obtain
H = FHdiag(H0; : : : ; HL�1)F (13)

where F is the DFT matrix with elements

fk+1;n+1 =
1p
L
expf�j2� kn

L� 1
g (14)

for k; n = 0; : : : L�1. By choosing 	 = � = FH , we obtain

z = Fy = F (Hv+w) = FHFH
u+ Fw

= FFHdiag(H0; : : : ; HL�1)FF
H
u+ Fw

= diag(H0; : : : ; HL�1)u+W (15)

where W = [W0; : : : ;WL�1]
0 is the DFT of w. The MMSE

receiver uses the DFT z of the received block y. Notice
that v is the inverse DFT of u. Since the DFT is a unitary
transform, the components of W are uncorrelated, with
variances equal to the power in wk. Notice that above de-
scribed use of the circulant matrix H is just an equivalent
representation. In reality we have a linear convolution in-
stead of a circular convolution and we precede the channel
input v by a preamble of size equal to the channel memory
(as in the more general case of the vector channels)

v�i = vL�i; for 1 � i � � (16)

The use of this preamble makes the linear convolution equal
to the circular convolution and, thus, eliminates the in-
terblock interference. The receiver computes the metrics
p(zju = si) for i = 1; : : : N to be used in (1). The compo-
nents of the input u are just scaled by the square roots of
the eigenvalues of the HHH matrix in the �rst case, and
by the DFT coe�cients of the channel impulse response in
the second case.

As the block size L increases, the DMT and vector chan-
nel asymptotically become equivalent, since the limit eigen-
vectors of HHH when L ! 1 are complex exponentials,
and the limiting eigenvalue distribution is the magnitude
square of the DTFT of the channel impulse response. The
e�ciency of these procedures increases, as the ratio L=�
increases.

4. JOINT SOURCE CHANNEL CODING FOR
VECTOR CHANNELS

Since the vector channel model decomposes the ISI channel
to L independent channels, we can apply the technique for

joint source channel coding for vector Gaussian channels
developed in [5]. In principle, we could assume that p = L,
and transmit a signal sli on the subchannel l. The design
problem is to �nd the optimal codebook vectors, encoding
regions and modulation signal points in the 2L-dimensional
signal set. However, to reduce complexity, instead of design-
ing 2L-dimensional VQ and signal set, we design a number
of VQ's and signal sets for groups of p subchannels, where
p divides L. We map each VQ output to the correspond-
ing signal point transmitted on a group of p subchannels,
not necessarily adjacent. We order the subchannels accord-
ing to the magnitudes of the DFT coe�cients in the DMT
approach or singular values in the SVD based vector chan-
nel approach; we then group p = 2m subchannels together
by choosing m subchannels from the top and m from the
bottom of the list, and then continue in the same fashion.

As a result of this procedure we design L=p VQ's and
signal sets (2p-dimensional). For each VQ design we use (3),
(4) and (5) with Pc(jji) computed for the DMC approxima-
tion of the corresponding group of subchannels. The total
distortion is obtained by averaging the distortion over all
groups of subchannels. The receiver must be able to prop-
erly group the subchannels in order to use centroids of the
VQ designed for this group of subchannels in (1). Notice
that in (1) vectors un and zn are 2p-dimensional, where p
is a factor of L. Also, xn, cj and ĉj in (3), (4) and (5) are
2p-dimensional.

To reduce complexity the signal points are obtained as
Cartesian product of points in two-dimensional constella-
tions. In particular, we consider PSK signals because each
point in a PSK constellation has equal power. We optimize
the power allocation to the component PSK's. Consider
j-th group of subchannels, where j = 1; : : : ; L=p. Assum-
ing that the power in the i-th component modulation is
Pi, the total transmitted power on this group of subchan-
nels is P j =

Pp

i=1
Pi. The i-th constellation is given in

terms of a �xed signal constellation S� with signal points
s�k = expfj2�k=Mg, k = 0; : : : ;M � 1 as:

sik = s�k

p
aipPp

i=1
ai

p
P j (17)

where faig is a set of parameters that determine power al-
location. The power in the i-th constellation is equal to
Pi = aiP

j=
Pp

i=1
ai. We can also use modi�ed param-

eters a0i = ai=
Pp

i=1
ai. We apply the gradient descent

method to obtain optimal values of a0i. We assign equal
power to each group of subchannels (P j = const), and re-
peat the described procedure. The total transmitted power

is Pav =
PL=p

j=1
P j . The design is performed for given

SNR= Pav=L�
2.

5. SIMULATION RESULTS

We use a �rst order Gauss-Markov source (autoregressive
AR-1, with correlation coe�cient 0.9). The channel is mod-
eled as an FIR with 3 complex coe�cients (� = 2). We
use the vector channel and discrete multitone approaches,
with block size L = 16. The singular values and singu-
lar vectors of the described channel matrix were computed
and used for the vector channel approach. In the DMT



approach, a FFT of the channel impulse response padded
with zeros to obtain the block size L = 16 was performed,
resulting in the subchannel complex gains. We �x the di-
mension of each VQ to k = 4, which with a source rate of
1bit/sample results in 16 codebook vectors. Setting k = 2p,
we get p = 2 and m = 1. Thus, the number of subchannel
groups, as well as codebooks and signal sets designed equals
L=p = 8. The LBG algorithm was used for the initial VQ
codebooks design. Our design is suboptimal, since we per-
form power allocation to the two component PSK modula-
tions of each 4-dimensional modulation only, as opposed to
the power allocation to all subchannels simultaneously. The
simulation results are presented in Fig. 2 and compared to
the OPTA (optimum performance theoretically attainable)
limit and to our previous results [11] for the same chan-
nel. The results are slightly inferior to the results obtained
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Figure 2: Reconstruction SDR in terms of channel SNR

using 2-TDM and 2-FDM (with a block MAP equalizer),
because our vector channel implementation does not take
the residual correlation between the VQ outputs into ac-
count. Both procedures avoid the use of an equalizer, but a
large number of codebooks and signal sets is needed, as well
as proper grouping of subchannels by the receiver. When
using smaller blocks (small L), the e�ciency of the proce-
dure drops, due to lower L=�. The complexity of the DMT
approach is much lower than the SVD based approach due
to FFT implementation, with comparable performance.

6. CONCLUSION

In this paper we proposed two procedures for joint source
channel coding over channels with intersymbol interference,
based upon vector channels and discrete multitone. Both
procedures are parallel, and are applied to a block of data.
Performance is somewhat inferior to previously described
TDM and FDM approaches with a block MAP equalizer,
since the residual correlation is not taken into account. Still,
these procedures have lot of potential, due to lower imple-
mentation complexity, i.e. elimination of the need of com-
putationally expensive equalization procedures. Especially

attractive is the DMT procedure, due to the FFT imple-
mentation.
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