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ABSTRACT

The problem of speech decoding is considered here in a Decision
Theoretic framework and a modified speech decoding procedure to
minimize the expected risk under a general loss function is formu-
lated. A specific word error rate loss function is considered and an
implementation in an N-best list rescoring procedure is presented.
Methods for estimation of the parameters of the resulting decision
rules are provided for both supervised and unsupervised training.
Preliminary experiments on an LVCSR task show small but statis-
tically significant error rate improvements.

1. INTRODUCTION

The MAP decision rule used widely in statistical speech recogni-
tion [1] finds hypotheses according to

Ŵ = argmax
W2W

P (XjW )P (W ): (1)

In this formulation the transcriptionW of an utterance is assumed
to have been selected from a set of all possibilitiesW under the
language modelP (W ) which in the absence of acoustic evidence
serves as a prior. For a given utterance the acousticsX are as-
sumed to have been generated according to the likelihoodP (XjW ).

In the Bayesian Decision Theoretic framework, the MAP rule
is obtained by first considering real-valued, usually non-negative,
loss functionsl(W;�(X)) that penalize incorrect estimates ofW
produced by a decision rule�(X)

�(X) : X !W: (2)

The decision rule minimizing the Bayes Risk

B(�(X)) = EP (W )[EP (XjW )[l(W; �(X))]] (3)

is given by [2]

�(X) = argmin
W2W

X
W 02W

l(W 0
;W )P (W 0jX): (4)

This decision rule is known as Bayes decision rule. It is straightfor-
ward to show that the MAP decision rule of Equation 1 minimizes
the Bayes Risk under the 0-1 valued loss function

lSER(W;�(X)) =

�
0 if �(X) = W ,
1 otherwise.

Since this function penalizes all incorrect sentences equally, it is
termed the sentence error loss.

The shortcomings of this minimum sentence error rate MAP
decision rule formulation have been long known [5] and have been
addressed recently in [6]. One problem is that thelSER loss func-
tion is only loosely linked to the recognition word error rate (WER)
which is taken here to be the performance measure of interest. It
assigns a loss of 1 for any incorrect classification without regard to
the number of words found correctly and is therefore a fairly crude
measure except when recognizer performance is very good. It is
thus desirable to consider more general loss functions that take an
appropriate form for the task at hand. If the intent is to minimize
the WER, for example,l(W; �(X)) = WER(W;�(X)) may be
an appropriate loss function; Stolckeet al. [6] have reported an
N-best list rescoring algorithm which can be thought of as a Bayes
decision rule under this criterion. In systems designed for speech
understanding applications, where thecontentsof the speech are
valued more than the exact word string recognized, a loss function
might penalize according to semantic distance,e.g.,

l(‘hello’,‘hello there’) < l(‘hello’,‘hello John’):

For all such loss functions the decision rule is found via Equa-
tion 4.

Another general problem associated with minimum risk deci-
sion rules is that it is necessary to obtain a good estimate of the
posterior distributionP (W jX). The model architectures, param-
eterization, and training procedures needed to obtain accurate es-
timates of this distribution are not yet available for large speech
recognition problems.

To address these two problems we propose here a decision rule
for decoding under the minimum Bayes Risk associated with a
WER-based loss function. The formulation of this modified de-
coding criterion is described first and its implementation as an
N-best rescoring procedure is given. The loss-function is itself
parameterized so that the resulting decision rule can be tuned to
optimize word-error rate over a held-out training set. A method
for the unsupervised optimization of these decision rule parame-
ters on a test set is also described. Results on the Switchboard
LVCSR task [3] are then given. While some modest but consistent
improvements are reported, the main purpose of this paper is to
present a framework in which model and decision rule parameters
can be estimated under a minimum risk criterion that permits loss
functions other than the sentence error rate and to motivate this ap-
proach by deriving and evaluating a decision rule under a modified
WER loss function.



2. MODIFIED LOSS FUNCTIONS AND MINIMUM RISK
DECODING

Direct derivation of decision rules from Equation 4 is impracti-
cal for at least two reasons:P (W jX) is unknown; and both the
search for the minimizer and the sum over all sentences for each
candidate are impractical to implement in most cases. A conse-
quence of not knowing the true posterior distributionP (W jX) is
that even if a loss function appropriate to the task such as WER
is given, it may not be optimal to use it directly asl(�; �) in Equa-
tion 4. The same argument, of-course, holds ifP (W jX) is known
but the exact minimization is not carried out instead. We therefore
propose that a class of loss functions be used which depend on the
task-specific loss function but have an additional degree of free-
dom. This additional degree of freedom, suitably parameterized,
may then be “tuned” for a given estimate ofP (W jX) and a given
approximation of the minimization.

Modified loss functions
The focus of this paper is a set of decision rules that minimize risks
associated with loss functions based on the word error rate. These
functions are written asl(W;�(X)) = fWER(W;�(X)). As dis-
cussed, fixed loss functions of any form may be not be appropriate,
so the following simple alternative is proposed

l(W; �(X)) = [WER(W;�(X))]x: (5)

WER(W;�(X)) is the number of word errors betweenW and a
hypothesis�(X). The ’tilt’ or exponential discounting parameter
x is not specified beforehand but will be adjusted using observed
data. The intent is to vary this parameter to minimize WER on
available data directly.

N-best list rescoring
Decision criteria based on loss functionsfWER(W; �(X)) have
the form

�(X) = argmin
W2W

X
W 02W

fWER(W
0;W )P (W 0jX):

If fWER(W;W ) = 0, then for eachW 2 W there is a term
missing from the sum due toW = W 0. Therefore it is plausible
to assume that candidate hypotheses with higherP (W jA) yield
a smaller sum than those with lowerP (W jA). Should this ad-
mittedly optimistic assumption hold, the minimizer is likely to be
among candidates with a high posterior probability. Hence it may
suffice to perform the minimization only over relatively likely can-
didates,e.g., the candidates present in a recognition N-best list.
This list is denotedWhl and the resulting decision rule is

�(X) = argmin
W2Whl

X
W 02W

fWER(W
0;W )P (W 0jX):

A second, less optimistic, assumption is that for candidates
W close to the true minimizer, the sum overW 0 2 W is well
approximated by a small number of dominant terms – the N-best
hypotheses generated by a moderately good recognizer. To see
the plausibility of this assumption, observe that the acoustic likeli-
hoods, and henceP (W 0jX), for word sequencesW 0 vastly differ-
ent from the true minimizer are expected to be smaller by orders
of magnitude than those of the N-best hypotheses. Their contribu-
tion to the sum may therefore be ignored even if the corresponding
fWER(W

0;W ) is large. IfWN�best denotes a suitably large N-
best list then, this amounts equivalently to assuming that

X
W 02W�WN�best

fWER(W
0
;W )P (W 0jX)

does not vary forW 2 Whl.
Under these two simplifying assumptions the decision rule be-

comes

�(X) = argmin
W2Whl

X
W 02WN�best

fWER(W
0
;W )P (W 0jX): (6)

Supervised optimization of the loss function
As discussed thus far, the decision rule requires computation of
quantities involving the distributionP (W jX) which for acous-
tic HMMs can be approximated byP (XjW )P (W )

P (X)
. As discussed

in [6] the estimation ofP (X) can be difficult in both computa-
tional and modeling complexity as it requires findingP (X) =P

W 0
P (XjW 0)P (W 0). However, it is possible to avoid this dif-

ficulty by minimizing the empirical Bayes Risk on available data.
Note first that the recognition criterion found so far is equivalent
to

�(X) = argmin
W2Whl

X
W 02WN�best

fWER(W
0
;W )P (X;W 0) (7)

sinceP (X) doesn’t affect the minimization. The remaining likeli-
hood scoresP (X;W ) are available in the N-Best lists. The word-
insertion penalties and grammar scale factors are unchanged from
the values used during recognition; these parameters are assumed
to be tuned already to the task.

The decision rule is further modified by adding a second tun-
ing parameter so that the joint likelihood is of the formP (X;Y )1=y.
For the loss function given in Equation 5, the resulting decision
rule is then parameterized byx andy so that

�x;y(X) = argmin
W2Whl

X
W 02WN�best

WER(W 0
;W )xP (X;W 0)1=y:

(8)

Rather than attempting to minimize the expected risk by es-
timatingP (W jX) and plugging it in to Equation 6, the form of
the decision rule given in Equation 8 is taken and all necessary
optimization of parameters is done to reduce the empirical risk by
minimizing the risk

1

jT j

X
(Wi;Xi)2T

WER(Wi; �x;y(Xi)) (9)

over a databaseT = f(Wi; Xi)g of labeled utterances. This opti-
mization is performed using a grid search to findx andy.

This is a hybrid approach in that it does not attempt to avoid
all estimation of the underlying distribution by finding decision
rule parameters through the minimization of empirical risk [7]. In-
stead, this approach makes use of existing models when they are
in convenient form and relatively reliable; all remaining decision
rule parameters are then found to optimize measured performance
directly on available data.

Unsupervised optimization
For some problems, notably speaker and channel adaptation, it
may be desirable to optimize decision rule parameters without us-
ing a separate training set. In this case, the empirical risk is op-
timized taking the “truth” as the maximum likelihood recognition



hypothesis. For the loss function considered here, the parameters
x andy are found to optimize

1

jT 0j

X
Xi2T

0

WER(Ŵi; �x;y(Xi)) (10)

over a test setT 0, whereŴi = argmaxW2W P (W;Xi). This
does not require generation of N-Best lists for held-out training
data and, as will be described, has been found to work almost as
well as supervised optimization for the problems studied.

3. EXPERIMENTS AND RESULTS

The proposed rescoring algorithm was evaluated in two experi-
ments on the Switchboard LVCSR task [3]. The test consisted
of 2427 utterances from 14 conversations (38 sides) that formed
the dev-test at the 1997 Johns Hopkins University LVCSR Work-
shop; full details of the test set definition, language models used,
and other details are given in [9]. The first experiment consisted
of rescoring N-best lists obtained from bigram word lattices gen-
erated using an HTK-based 12-mixture speaker and gender inde-
pendent cross-word triphone system [8] with 6973 triphone states.
These lattices had a lattice word error rate of 9.6% with 0.9%
OOVs. N-best lists denoted Set-I were then generated to a depth
of 1000. It was not possible to find 1000 hypotheses for every
utterance; the average list depth was 951.

To obtain the N-best lists rescored in the second experiment,
bigram lattices were first generated using the above HMMs; the
bigram lattices were pruned to reduce the number of lattices nodes
to 1/3 of the original number, yielding lattices with a lattice word
error rate of 10.1% and 0.8% OOVs. These lattices were then
rescored using a trigram language model and HMMs adapted for
each speaker using exponential warp maximum likelihood vocal
tract normalization and global MLLR [4] based on the 1-best bi-
gram hypotheses. N-best lists denoted Set-II were then generated;
the average list depth was 722.

In both experiments the top 25 candidates in the N-best lists
were considered for rescoring; i.e. the setsWhl had 25 candidates.

Table 1 lists the oracle word error rates for these two sets of

WER
N Set-I Set-II
1 44.80 38.50
10 34.80 28.70
20 31.20 26.50
25 31.20 25.90

Table 1: Oracle WER at increasing N-Best list depth.

N-Best lists at increasing depth. These are the minimum WERs
attainable for a fixed sizeWhl and so are lower bounds on the
WER attainable in these experiments.

Supervised optimization and rescoring
For supervised optimization of the decision rule a set of N-best
lists was generated for a held-out portion of the Switchboard acous-
tic training set. This consisted of 2109 gender-balanced utterances
from 536 conversations (871 sides). As in the test conditions, the
Whl had 25 candidates and theWN�best had depths of at most
1000. The decision rule parametersx andy were optimized via
a grid search to minimize the WER on this set and the optimum
values were found to bex = 1.7 andy = 35.

These parameter values were used in rescoring the two test
sets of N-best lists, even though they were optimal only for Set-I.
The results given in Table 2 show consistent reduction of WER,
although the reduction is slightly less for the better system.

Unsupervised optimization and rescoring
The decision rule parametersx andy were found by optimization
of Equation 10 directly over the two test sets of N-best lists. The
optimal parameter values for Set-I were found to bex = 1.3 and
y = 50. For Set-II they werex = 2.6 andy = 35. Table 2 lists
the corresponding results. Note that the gain of about 0.5% car-
ries over from the bigram experiment to the Trigram + ML-VTN
+ MLLR case and also that the error rate improvements in the un-
supervised case are very similar to those in the supervised case for
both experiments.

Bigram Trigram
no adapt. ML-VTN+MLLR

SER WER SER WER
Baseline 70.60 44.80 65.90 38.50
Supervised 71.10 43.90 66.70 38.00
% abs change +0.50 -0.90 +0.80 -0.50
Unsupervised 71.30 44.00 67.10 38.00
% abs change +0.70 -0.80 +1.20 -0.50

Table 2: WER and SER for minimum risk rescoring.

A final set of experiments was performed to compare the rescor-
ing approach proposed here to that of Stolckeet al. [6]. To test the
latter, the implementation provided in the SRI Language Modeling
Toolkit was used. The size of the candidate setWl was kept at 25.
Rescoring was performed using both the Set-II N-best lists and a
set of depth 2500 N-best lists generated in same manner, i.e. with
trigram and global MLLR; the average depth of this latter set was
1661.

Baseline N = 1000 N = 2500
38.5 38.5 38.4

Table 3: SRI LM Toolkit MWER Rescoring Results

As can be seen from Table 3, the procedure of [6] does not
yield significant improvement in these experiments. This is con-
sistent with observations reported in [6], namely that the technique
is less effective as WER decreases. This is in contrast to the results
given in Table 2, which demonstrate that the technique proposed
in this paper remains effective. These results are not a definitive
comparison of the two techniques; they are given only to suggest
that the procedure proposed here may prove to remain effective as
error rates decrease.

4. DISCUSSION AND CONCLUSION

We have proposed a modified decoding rule intended to address
the limitations inherent in the MAP decoding criterion and have
described its implementation as an N-best rescoring scheme. The
explicit form of the decoding rule is derived within the minimum
Bayes risk framework. This procedure allows existing model pa-
rameters to be used as appropriate and additional parameters that



modify both the loss function of interest and the model-based like-
lihoods can be added as needed and adjusted to minimize empir-
ical risk on available data. It is argued that this scheme bypasses
some computational and modeling difficulties inherent in finding
a ’plug-in’ minimum risk decoder.

Since the N-best rescoring scheme can be implemented for
general loss functions, loss functions can be tailored to the re-
quirements of the recognition task. Although the error rate im-
provements obtained are less than 1% absolute, the gains seem to
be additive with other contributions due to improvements in lan-
guage models and speaker adaptation. Undoubtedly the quality of
the N-best lists to be rescored affects the error rate improvements.
A problem of interest is to consider more candidates by enlarging
Whl without large increases in computational cost.
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