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ABSTRACT

Wreath product group based spectral analysis has led
to the development of the wreath product transform, a
new multiresolution transform closely related to the wavelet
transform. In this work, we derive the �lter bank imple-
mentation of a simple wreath product transform and show
that it is in fact, a multiresolution Roberts Cross edge de-
tector. We also derive the relationship between this trans-
form and the two-dimensional Haar wavelet transform. We
prove that, using a non-traditional metric for measuring
edge amplitude with the wreath product transform, yields
a rotation and translation invariant edge detector. We in-
troduce a novel method for measuring the orientation of an
edge and show that it is without error in the noise-free case.
The wreath product transform edge detection performance
is shown to be superior to many standard edge detectors.

1. INTRODUCTION

Edge detection is an important step in many image process-
ing applications. The classic procedure for edge detection
is to de�ne an edge as an abrupt intensity change within an
image. To detect the edge, a number of intensity gradients
in di�erent directions are computed, and from these the
magnitude and orientation of the edge are extracted. Com-
monly, these gradients are computed using simple, well es-
tablished operators such as the Sobel , Prewitt, and Roberts
Cross [10] [2]. There are also many more sophisticated edge
detectors available. The Canny edge detector [5] is proven
to be optimal for many types of edges. Mallat et al. [6] have
implemented a multiresolution Canny edge detector with a
wavelet transform. Recently, other more complex wavelet-
based multiresolution edge detectors have also been devel-
oped [4]. Multiresolution techniques are very well suited
for edge detection, because as noted by Canny [5] and oth-
ers, there is a tradeo� between noise removal and precise
localization of an edge.

In this paper, we develop a multiresolution edge detec-
tor that uses the Roberts Cross edge detector as it's basis
functions. This is done through the use of a wreath product
transform (WPT).

This work follows recent work by Healy et al. [1] us-
ing �nite group theoretic-based signal representation for
image processing, aided further by the development of a
fast FFT-based algorithm [3] for it's implementation. Using
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wreath product groups that arise as automorphism groups
of spherically homogeneous trees, the spectral representa-
tion of these groups generates the wreath product trans-
form, which is a multiresolution block transform that pos-
sesses the group-invariant property of the subspaces; that is,
projections of functions onto subspaces remain within the
subspaces, under group transformation on the underlying
set on which the group acts.

After showing that the WPT is a multiresolution Roberts
Cross edge detector, we show two ways to signi�cantly im-
prove the standard Roberts Cross performance. We will
show that the magnitude measure given by the L1 norm
is translation and rotation invariant. We also introduce a
new metric for measuring edge orientation that is without
error in the noise-free case. There have been many studies
in the literature [10] [8] [7] that have evaluated the perfor-
mance of various edge detectors. We will evaluate the WPT
edge detector according to these criteria. Finally, we derive
the relationship between the WPT and the two-dimensional
Haar wavelet transform.

2. THE WREATH PRODUCT TRANSFORM

We select here the particular WPT originating from the
homogeneous tree X49 [1]. Hence, given for example a 512�
512 image, the image is divided into a 2� 2 grid with the
subgrids successively divided into 2 � 2 grids until blocks
of size 2 � 2 are reached. We choose a quad tree indexing
scheme where the pixels are scanned in a counterclockwise
fashion, as shown in Figure 1, to generate a 5122�1 vector.
All groups are assumed to be the symmetric group S4. For
determining the �rst level of the WPT, a 4-point unitary
one-dimensional discrete Fourier transform is applied to all
successive 4-point sequences in the input vector.

V = [ ~V0; ~V1; ~V2; ~V3] = DFT[X0;X1;X2;X3]: (1)

So by de�nition, our outputs are:

~V0 = (X0 +X1 +X2 +X3)=2; (2)

~V1 = (X0 � iX1 �X2 + iX3)=2; (3)

~V2 = (X0 �X1 +X2 �X3)=2; (4)

~V3 = (X0 + iX1 �X2 � iX3)=2: (5)

The 4-point DFT is applied recursively to all lowpass out-

puts ~V0 at each stage, generating a pyramid type decompo-
sition. We see that ~V0, ~V1, and ~V2 correspond to outputs



�X0 �X3

�X1 �X2

Figure 1: Labeling convention for 2� 2 pixel block

of lowpass, bandpass and highpass �lters respectively, while
~V3 is just the complex conjugate of ~V1.

It is easily seen that the one-dimensional circular scanned
DFT operation can also be implemented as a 4-band two-
dimensional complex �lter bank decomposition where the
�lters are as follows,
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The outputs are then downsampled, and the �lter bank is
recursively applied to the lowpass image. Looking at these
�lters we see that WB2 can be eliminated since it is the
complex conjugate of WB1. Assuming real data, we can
separate �lterWB1 into it's real and imaginary components,
yielding the following four �lters:
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Now we have a real �lter bank implementation of a wreath
product transform. We �rst note that �WD1 and �WD2

are the two gradient operators used by the Roberts Cross
edge detector. Therefore, as these operators are recursively
applied to the downsampled lowpass output, we see that
the WPT is a multiresolution Roberts Cross edge detec-
tor. As an example of the wreath product spectrum, we see
the magnitude after separation of subbands into real and
imaginary components in Figure 2(a).

We note that the WPT operators are very similar to the
basis function used by the two dimensional Haar wavelet
transform. In Section 7, we will show that the two trans-
forms are linearly related, and we derive the relationship.

3. EDGE DETECTION MODEL AND

MEASURES

To evaluate the performance of the WPT edge detector,
we will be using some standard models and measures that

have become well established in the edge detection litera-
ture. Figure 2(b) shows a generalized model of the step
edge that was presented by Abdou and Pratt [10]. Their
model assumed that the edge was centered in a 2� 2 block
(c = 1

2
). We generalize this to allow the edge to lie any-

where within the block (0 � c � 1). As noted by Abdou et
al. [10], because of the symmetry of both the edge model
and the edge operators, tests need only be performed for
edges that lie between 0� and 45�:

The Roberts Cross edge detector uses a simple di�eren-
tial operator. The directional gradients �ED1 and �ED2

are computed in two orthogonal directions by convolving
the image with the operators WD1 and WD2 as de�ned ear-
lier. Therefore, for our sample pixel block in Figure 1,

�ED1 = X0 �X2; �ED2 = X3 �X1: (14)

The orientation of the edge is then calculated as:

� = tan�1
�ED2

�ED1

: (15)

We note � is o�set by 45� due to the gradient directions of
the Roberts Cross operators. The magnitude of an edge is
usually represented by the Euclidean or L2 norm

M2 =
p
�E2

D1
+�E2

D2
: (16)

Because of the complexity of computing the square root, L1

and L1 norms are sometimes used instead,

M1 = j�ED1j+ j�ED2j; (17)

M1 = max(j�ED1j; j�ED2j): (18)

4. ROTATION INVARIANT EDGE

DETECTION USING THE L1 NORM

The Sobel, Prewitt and Roberts Cross edge detectors using
standard L2 norm for magnitude measurement are not ro-
tation invariant [10]. This has the e�ect that when thresh-
olding the output to remove noise, any value chosen as a
threshold will exclude edge points for some orientations
while including non-edge points for other orientations.

MeasuresM1 andM1 are typically employed only to re-
duce computation since for most edge operators, like the So-
bel and Prewitt, they introduce signi�cant errors [7]. Hence
we observe a tradeo� between accuracy and complexity.

The interesting point is that this is not true for the
Roberts Cross edge detector. Kitchen and Malin [8] in their
comparative study of edge detectors, observed simulations
which show that using the L1 norm to measure magnitude
with the Roberts Cross operator produced orientation in-
variant measurements. Rosenfeld [9] has also shown that
using the L1 norm measurement gives the magnitude of
the \best-�tting" edge to a 2 � 2 pixel block.

We will show that using the L1 norm as our magnitude
measure for the WPT, will yield an edge detector that does
not have an orientation bias.

Assume we have an ideal edge of amplitude h as modeled
in Figure 2(b) [10]. We see that the L1 measure gives the
exact edge amplitude for any angle from 0� to 45�. We



apply the operators WD1 and WD2 and compute the L1
norm,

M1 =max(jX0 �X2j; jX3 �X1j); (19)

where from the model, we see that

jX3 �X1j = h; (20)

jX0 �X2j = jh(tan�� 1)j
� h (21)

which gives us,
M1 = h (22)

Therefore we see that for an edge with a magnitude of h,
the magnitude measured using the L1 norm will be h for
any orientation � and any location within the 2 � 2 pixel
block as given by c. The L1 norm gives us a rotation and
translation invariant edge detector.

5. A NEW METHOD TO OBTAIN AN

UNBIASED ORIENTATION MEASUREMENT

The Sobel, Prewitt, and Roberts Cross edge detectors are
not able to distinguish the orientation of an edge without
error [10] [7]. Many researchers have tried various meth-
ods for correcting this bias, with varying degrees of suc-
cess. Some ideas implemented are lookup-table correction
factors, and an iterative procedure which modi�es the mag-
nitude of the operator masks depending on the value of the
measured orientation [7]. We suggest a simple approach
for the Roberts Cross edge detector. We introduce a new
metric to determine the orientation. That is,

�WPT = tan�1(1� �ED1

�ED2

); (23)

where this measure matches the edge model. In comparing
this to the traditional measure in equation (15), we see that
the formulas are similar, wherein each takes a ratio of the
two gradients.

Empirical tests show this new method gives the orien-
tation of the model edge exactly, with no error.

6. PERFORMANCE OF THE WPT EDGE

DETECTOR

Table 1 shows the comparative performance of some im-
portant edge detectors. We see that the WPT identi�es
the model edge without error. Also, we know the Roberts
Cross is better able to localize an edge than the Sobel and
Prewitt [10], given the smaller size of the operator. These
are all positive features for the WPT.

The WPT is also a multiresolution transform and this
is important since it can allow good control over the noise
removal and localization tradeo�. We note that when per-
forming edge detection at the lowest scale of the transform,
edges are well localized, but are susceptible to noise. Any
noise present in the image will show up in the L1 mea-
surement, since there is no averaging at that scale. At the
next higher scale, the noise will be reduced because of the
averaging operation of the lowpass �lter. The WPT is also
easy to implement, given the small �lter sizes.

EDGE DETECTOR Angle Error Magnitude Error
(degrees) (percent)

Sobel 2.90 7.93
Prewitt 7.43 12.87

Roberts Cross 8.73 29.30
WPT 0 0

Table 1: Maximum Errors of Edge Detectors for 0� � � �
45� . The Sobel, Prewitt, [7] and Roberts Cross magni-
tudes are with the standard L2, � metrics and the WPT
magnitude is with the L1 and �WPT metrics.

7. THE RELATIONSHIP BETWEEN THE WPT

AND THE HAAR WAVELET TRANSFORM

The WPT is closely related to the two dimensional Haar
wavelet transform. The basis functions for the Haar are,
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1
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�
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1 1

�
; (24)
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1 1
�1 �1

�
; (25)
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�
; (26)

HHP =
1

2

�
1 �1
�1 1

�
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We can clearly see the linear relationship:

HLP = WLP ; (28)

HHP = WHP ; (29)

HHE = �(WD1 +WD2); (30)

HV E = WD2 �WD1: (31)

This leads to an interesting duality in their magnitude mea-
sures. Duality between the Roberts Cross edge detector
and the Haar basis function was observed in simulations by
Kitchen and Malin [8] and they concluded that the relation-
ship was unexpected, and could not be trivially explained.
But, using the relationships in equations (30) and (31), it
becomes easy to extend the relationship to the norms. We
apply the WPT operators WD1 and WD2 to the pixel block
in Figure 1, and calculate the L1, L2, and L1 norms. We
then apply the Haar operators HHE and HV E to the pixel
block and compute their norms. Then after, some simpli�-
cation, and applying the triangle inequality, we get

M1Haar = M1WPT � 2; (32)

M1Haar = M1WPT ; (33)

M2Haar = M2WPT �
p
2: (34)

Using these relationships, we see that we can obtain the
same rotation invariant edge detection results with the Haar
wavelet transform L1 norm as with the WPT L1 norm.
Singh et al. [11] and others have experimented with using
Haar wavelets for edge detection, and our research serves
to quantify their results and show methods to signi�cantly
improve the performance.
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Figure 2: Multiresolution Spectrum and Edge Model

8. CONCLUSION

Using the WPT, we have developed a multiresolution Roberts
Cross edge detector. We have shown how the use of the L1
norm yields a rotation and translation invariant edge mea-
surement. We have also introduced a novel way to com-
pute the orientation of an edge, that is error free for our
edge model. We have shown how this yields an edge detec-
tor with signi�cantly better performance than the Sobel,
Prewitt, or conventional Roberts Cross edge detectors. Fi-
nally, by deriving the relationship between the Haar wavelet
transform and the WPT, we have also provided additional
insight into the properties of that classic transform.
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