
A FAST VOCABULARY INDEPENDENT ALGORITHM FOR SPOTTING

WORDS IN SPEECH

S. Dharanipragada S. Roukos

IBM T.J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
Email: dsatya@watson.ibm.com

ABSTRACT

In applications such as audio-indexing, spoken mes-
sage retrieval and video-browsing, it is necessary to
have the ability to detect spoken words that are outside
the vocabulary of the speech recognizer used in these
systems, in large amounts of speech at speeds many
times faster than real-time. In this paper we present
a fast, vocabulary independent, algorithm for spotting
words in speech. The algorithm consists of a prepro-
cessing stage and a coarse-to-detailed search strategy
for spotting a word/phone sequence in speech. The
preprocessing method provides a phone-level represen-
tation of the speech that can be searched e�ciently.
The coarse search, consisting of phone-ngram match-
ing, identi�es regions of speech as putative word hits.
The detailed acoustic match is then conducted only at
the putative hits identi�ed in the coarse match. This
gives us the desired accuracy and speed in wordspot-
ting. Overall, the algorithm has a speed of execution
that is 2400 times faster than real-time.

1. INTRODUCTION

Most current audio-indexing systems use a combina-
tion of speech recognition and information retrieval. A
large vocabulary continuous speech recognition system
is used to produce time aligned transcripts of the given
collection of speech. Information retrieval techniques
are then employed on these recognized transcripts to
identify locations in the text that are relevant to the
search request. One limitation with this approach to
audio-indexing is the �nite coverage of the vocabulary
used in the speech recognizer | words such as proper
nouns and abbreviations that are important from an
nformation retrieval standpoint are often found miss-
ing in the vocabulary and hence in the recognized tran-
scripts. One approach to overcome this limitation is to
complement the speech recognizer with a wordspotter
for the out of vocabulary (OOV) words. For this ap-
proach to be practical, however, one requires the ability
to detect spoken words in large amounts of speech at

speeds many times faster than real-time.
Current wordspotting techniques are mainly of

three types:

1. A large vocabulary continuous speech recognizer
is used to produce N best transcriptions of the
speech. From the N-best lists, the a posteriori

probability of the word in question, is estimated. If
this probability exceeds a user-de�ned threshold,
the given word is deemed present. [1]

2. Separate acoustic models are built for background
speech and keywords and a network consisting
of these models in parallel is constructed. The
network is updated time-synchronously using the
standard Baum-Welch algorithmand the a posteri-

ori probability of the keyword ending at any given
time is computed. If this probability exceeds a
user-de�ned threshold, the given word is deemed
present. [2]

3. Speech is preprocessed and stored as a phone lat-
tice by running a modi�ed Viterbi decoder on a
null-grammar phone network. The presence of
a given word is determined by conducting a dy-
namic programming search on the phone lattice
with penalties for phone insertions, deletions and
substitutions. [3]

All the above methods have their shortcomings. In the
the �rst method, wordspotting essentially reduces to
searching through text. Consequently, retrieval is fast.
However, it has the serious shortcoming that words
that do not appear in the vocabulary of the speech rec-
ognizer cannot be spotted. The second method has no
limitations on the words that can be searched for, but
is very slow since it requires re-running the wordspot-
ter every time a new word is speci�ed and hence is
not practical. The third method has both the exibil-
ity of being able to search for any word and speed of
retrieval. However, it relies heavily on phone recogni-
tion accuracy which is often very poor. In this paper
we describe a novel method for wordspotting that has
the same exibility as the lattice-based approach but is
much faster and more accurate. We accomplish this by



adopting a three-step procedure { a preprocessing step
and a two stage search strategy. In the preprocessing
step we convert the speech waveform into a represen-
tation consisting of a table of phone-ngrams with the
times at which they occur with a high likelihood. This
representation allows us to search through the speech
very e�ciently. The two stage search consists of �rst
a phone-ngram lookup to narrow down the time inter-
vals where the word was likely to have been uttered and
then a detailed acoustic match at these time intervals
to �nally decide more accurately whether the word was
actually uttered in that time interval.

2. THREE STAGE ALGORITHM FOR

WORDSPOTTING

The algorithm consists of three steps: (1) preprocess-
ing (2) coarse acoustic match and (3) detailed acoustic
match.

2.1. Pre-processing:

The preprocessing step consists of converting the
speech into a table consisting of times of occurrence
and normalized likelihood scores of phone-ngrams (usu-
ally triphones) in the given speech. This is achieved by
a time-synchronous Viterbi-beam search which uses a
phone language model organized as tree to constrain
the dynamic programming search.

Phonetic baseforms of the words in a large vocabu-
lary are arranged in the form of a tree, called the fast
match tree, which is then converted into a graph ca-
pable of representing arbitrary sequences of words by
adding arcs which go from each leaf back to the root
node. Transition probabilities are assigned to each arc
as 1=N where N is the number of arcs leaving the source
node. A self-loop probability of 0.5 is also assumed for
each node. This graph is used to constrain a dynamic
programming search and in e�ect plays the role of a
phone language model in the search.

Phones attached to each arc of the fast match tree
are represented either by a three-state context depen-
dent HMM or a context independent single state HMM
to reduce computation. Our initial experiments used a
single state topology for each phone. When a single
state topology is used, each node of the fast match tree
directly corresponds to a state in the trellis and in order
to maintain the desired three-frame minimumduration,
transitions only every third frame are allowed.

The trellis is updated time-synchronosly using a
standard Viterbi-beam search algorithm [4]. At every
third frame, the scores of all the active nodes are up-
dated and the identities of the top M nodes are noted.
Here M is a user de�ned parameter. Each node in the
trellis represents a sub-word or a phone sequence which
is be determined by traversing the tree from the root

node to that node. The active nodes thus signify the
top triphones that best describe that local region of
speech. For each active triphone, � = p1p2p3, a nor-
malized log-likelihood score is computed as

st(�) =
logScore(Sp3e ; t)� logScore(Sp1

b ; ts)� ns(ts; t)

t� ts
;

where logScore(s; t) is the Viterbi score of state s at
time t and Sp3e and Sp1b are the exit and entry states
of p3 and p1 respectively. ns(ts; t) is a normalization
score computed using the phone probabilities between
ts and t. To reduce storage requirements, the time
axis is discretized into T second intervals, where T is
a user de�ned parameter, and all active triphones are
binned into these intervals. A table of triphones versus
their times of occurrence in the given speech along with
their acoustic scores, is thus generated. For example,
if the time axis is discretized into 1 sec intervals and
triphones N EH DX, EH DX AX, and DX AX N were
in the beam in the intervals [21 22][31 32], [21,22][51
52], and [31 32][40 41] respectively, then the table will
appear as:

triphone time (secs)
N EH DX 21 31 � � �

EH DX AX 21 51 � � �

DX AX N 31 40 � � �

...

2.2. Coarse acoustic match for putative hits:

Given a new word, we determine its phonetic transcrip-
tion (baseform) using either a large dictionary of base-
forms or a spelling to baseform generation mechanism1

[5]. The baseform speci�es the triphones that need to
be looked up from the triphone-times table. Let Nb

be the number of these triphones. For each of these
triphones we look-up, from the table generated in the
preprocessing step, the times where the triphone was
found in the speech. For each time-interval where more
than a certain fraction of the total number of triphones
is found, a crude acoustic score is computed for the
word as

st(wn) =
NbX

i=1

st(pi); (1)

where st(pi), the acoustic score for each phone in
the baseform, is determined using the normalized log-
likelihood scores of the triphones that are found in that
time interval and the beam-width used in the Viterbi-
beam search of the pre-processing stage. This acoustic
score is used to rank all the putative hits (time inter-
vals).

1One could even prompt a user to provide the pronunciation.



N

Filler or mumble model 

Baseform 1

Baseform 2

Baseform K

Filler model Filler model

P

P

:

P

1

2

Figure 1. Network used in the detail match.

2.3. Detailed Match at the putative hits:

In order to reduce the number of false alarms a more
detailed match is performed at the regions classi�ed as
putative-hits in the previous stage. To speed up the
detailed acoustic match a simple two step approach
is taken. First, a network consisting of \mumble" or
\�ller" models and all the alternative baseforms for
the given word is constucted as shown in Fig 1. For
each putative hit, the best path through this network
is computed using a Viterbi algorithm with traceback
and the start and end times, ts , te, for the word are
determined. Next, the �ller model and each of the al-
ternative baseforms are scored between the start and
end-time determined in the previous step and the dura-
tion normalized log-likelihood ratio (DNLLR) is com-
puted as follows:

DNLLR =
logScore(Swe ; te) � logScore(Sfe ; ts)

te � ts
;

where logScore(s; t) is the Viterbi score of state s at
time t and Swe , S

f
e are the exit states of the word and

�ller HMMs respectively. All putative hits are ranked
based on the best DNLLR amongst the alternative
baseforms.

3. EXPERIMENTS

Experiments were conducted on the HUB4 corpus
which consists of approximately 100 hours of broad-
cast news. Acoustic models were trained using the �rst

50 hours of data. From the remaining 50 hours, 18
shows totalling to 10 hours of broadcast news was se-
lected as a test set. From the transcripts of these shows
38 words that were out of the vocabulary used in the
pre-processing stage were selected as a test set.

3.1. Acoustic models

Acoustic models were trained using the �rst 50 hours of
the HUB4 data. Context-dependent sub-phone classes
are identi�ed by growing a decision tree using the WSJ
training data and specifying the terminal nodes of the
tree as the relevant instances of these classes [8, 9, 10].
Overall, the decision tree had 5700 leaves. The �rst
50 hours of the HUB4 training data is poured down
this tree and the acoustic feature vectors that charac-
terize the training data at the leaves are modeled by
a mixture of Gaussian pdf's, with diagonal covariance
matrices. Each leaf of the decision tree is modeled by
a 1-state Hidden Markov Model with a self loop and
a forward transition. Overall the system has approxi-
mately 170,000 Gaussians. Output distributions on the
state transitions are expressed in terms of the rank of
the leaf instead of in terms of the feature vector and the
mixture of Gaussian pdf's modeling the training data
at the leaf. The rank of a leaf is obtained by comput-
ing the log-likelihood of the acoustic vector using the
model at each leaf, and then ranking the leaves on the
basis of their log-likelihoods. To update the scores in
the pre-processing stage and in the detail match we re-
quire the probabilities of the phones attached to these
nodes. We compute the probability of each phone as
the maximum probability over all context-dependent
sub-phonetic units of that phone { this gives us con-
text independence [7].

3.2. Wordspotting Performance

Experiments were carried out both with handcrafted
baseforms and baseforms generated using spelling to
sound rules. Fig. 2 shows the trade-o� between the
false-alarms per keyword per hour (fa/kw-hr) and the
detection rate for the algorithm. The �gure-of merit
(FOM) for this algorithm was computed by averag-
ing the detection rates at false alarm levels ranging
from 0 to 10 and is shown in Table 1. We observed a
13.6% degradation in FOM when automatically gener-
ated baseforms were used in place of handcrafted base-
forms.

In a real retrieval situation, one is more interested
in the performance of the algorithm when the absolute
number of false-alarms is 10 or less. This corresponds
to a fa/kw-hr level of 1 in Fig. 2 since we have 10 hours
of test data. From Fig. 2 the detection rate at this level
is 44.2% when hand-crafted baseforms are used for the
new words. We believe that this detection rate is quite



FOM
Dict. baseforms 54.3%
Auto. baseforms 46.9%

Table 1. Figure of Merit for the algorithm with hand-
crafted and automatically generated baseforms.

high given that it is achieved on words that are not part
of the acoustic training vocabulary and also since the
spotting algorithm does not employ a language model
at any stage.

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

false−alarms/KW−hr

de
te

ct
io

n 
ra

te

Dictionary

STS

Figure 2. ROC curve for the wordspotting algorithm with
automatically generated (Spelling-To-Sound rules) base-
forms and with handcrafted (dictionary) baseforms

3.3. Speed of execution

The main feature of this algorithm is its speed of execu-
tion once the pre-processing is done. With our current
implementation, searching through 10 hours of speech
requires approximately 15 seconds of CPU time for a
keyword on an IBM model 590 RS6000 workstation.
This translates to a speed of execution that is approx-
imately 2400 times faster than real-time.

3.4. CONCLUSIONS

We presented a novel and e�cient algorithm for
the problem of spotting arbitrary keywords in large
amounts of speech at speeds several times faster than
real-time. The algorithm is currently being integrated
with a large vocabulary continuous speech recognizer

and an information retrieval system to obtain an open
vocabulary audio-indexing system. Re�nements to the
algorithmand implementation are currently in progress
and we hope to achieve further improvements on the
speed and accuracy of wordspotting.

REFERENCES

[1] M. Weintraub. \LVCSR Log-Likelihood Ratio
Scoring For Keyword Spotting",ICASSP 1995, Vol
1, pp 297-300.

[2] J.R. Rohlicek, W. Russel, S. Roukos, H. Gish.
\Word Spotting", ICASSP 1989, pp627-630.

[3] D.A. James, S.J. Young. \A Fast Lattice-Based
Approach To Vocabulary Independent Wordspot-
ting", ICASSP 1994, pp 377-380.

[4] G.D. Forney, Jr. \The Viterbi Algorithm," Proc.
IEEE, vol 61, pp 268-278. 1973.

[5] J. M. Lucassen and R. L. Mercer. \An Information
Theoretic Approach to the Auto matic Determi-
nation of Phonemic Baseforms", in Proceedings of
the IEEE Internat ional Conference on Acoustics,
Speech and Signal Processing, pp. 4 2.5.1-42.5.4,
1984.

[6] P.S. Gopalakrishnan, L.R. Bahl, R.L. Mercer. \A
Tree Search Strategy for Large-Vocabulary Con-
tinuous Speech Recognition." ICASSP 1995, vol
1, pp 572-575.

[7] L.R. Bahl et al. \Performance of the IBM Large
Vocabulary Continuous Speech Recognition Sys-
tem on the ARPA Wall Street Journal Task."
ICASSP 1995, vol 1, pp 41-44.

[8] L.R. Bahl and P.V. deSouza and P.S. Gopalakrish-
nan and D. Nahamoo and M.A. Picheny, \Robust
methods for context-dependent features and mod-
els in a continuous speech recognizer," in Proc.,
Intl Conf. on Acoust., Speech, and Sig. Proc.,
1994.

[9] P.S. Gopalakrishnan and L.R. Bahl and R. Mercer,
\A tree search strategy for large vocabulary con-
tinuous speech recognition," in Proc., Intl Conf.
on Acoust., Speech, and Sig. Proc., 1995.

[10] L. R. Bahl et al ., \Performance of the IBM large
vocabulary continuous speech recognition system
on the ARPA wall street journal task," in Proc.,

Intl Conf. on Acoust., Speech, and Sig. Proc.,
pp. 41{44, 1995.


