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ABSTRACT

A smoothed variant of the EM algorithm is given for simultaneous
training the first layer and the output layer globally in theNormal-
ized Radial Basis Function (NRBF)nets andExtended Normal-
ized RBF nets (ENRBF), together with a BYY learning criterion
for the selection of number of basis function. Moreover, a hard-
cut fast implementation and an adaptive algorithm have also been
proposed for speeding up the training and to handling time varying
in the real time nonlinear signal learning and processing. A num-
ber of experiments are made on foreign exchange prediction and
trading investment.

1. INTRODUCTION: NRBF AND ENRBF NETS

Normalized RBF (NRBF) nets have been used in nonlinear signal
learning and processing with quite promising results [1, 4, 5]. In
this paper, we propose a new learning technique for NRBF nets
with adaptive algorithm.

The NRBF nets and its Extended NRBF (ENRBF) nets can be
summarized in the general form [6, 4]:
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where�(r2) is a prespecified basis function satisfying certain
weak conditions. The most common choice is the Gaussian�(r2) =

e�r
2

, several choices are listed in [7].mj is called the center vec-
tor andwj is a weight vector.�j is ad�d covariance matrix, and
Wj is a parameter matrix.

For the existing approaches [6, 2, 4], the learning on the pa-
rameters in eq.(1) is separated into two steps:

(1) Determining the parameters in the input layer. The centers
mj; j = 1; � � � ; k are determined only based on the input samples
Dx = fxig

N
i=1 via some clustering technique, for example, the

K-means algorithm [6]. The cluster centers are usually used as
mj; j = 1; � � � ; k, with thek heuristically pre-fixed. While�j is
either externally prespecified at some value or computed from the
resulted cluster centered atmj.

(2) Determining the parameters in the output layer. After the
parameters are settled, the parameter vectorwj or Wj ; cj can be
determined by the least squares method based on the paired data
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setDx;z = fxi; zig
N
i=1. The procedure can be implemented either

in the batch way or by the adaptive least squares algorithm.
The above two step learning usually results in a suboptimal re-

sult. This is one problem that needs to be further solved. The sec-
ond problem for learning in RBF nets is how to select the number
of basis functions, which will also affect the performance consid-
erably. In the paper [9], a number of theoretical results are given
for the upper bounds of convergence rate of the approximation er-
ror with respect to the number of basis functions. Rival Penalized
Competitive Learning (RPCL) is able to automatically select the
number of clusters and thus suggested for RBF nets [8]. How-
ever, although it experimentally works well, RPCL is a heuristic
approach and still in lack of theoretical justification.

In [12], the NRBF and ENRBF nets are shown to be a spe-
cial case of theAlternative Model for Mixture of Experts[11] and
thus the well known Expectation-Maximization (EM) algorithm
for maximum likelihood learning is suggested to the two types
of RBF nets for determining the parameters in the input and out-
put layers globally. Moreover, the Alternative Model for Mixture
of Experts (AMME) is shown to be a special case of the recent
proposedBayesian Ying-Yang (BYY)learning system and theory
[13, 14, 10] such that an interesting model selection criterion has
been obtained to determine the number of experts and basis func-
tions. This paper further considers how to extend these previous
results into adaptive learning to tackle practical problems in non-
linear signal learning and processing, especially for time-varying
finaicial time series.

In Sec. 2, we introduce a smoothed variant of the batch way
EM algorithm for NRBF and ENRBF nets, as well as the BYY
learning criterion for the selection of number of basis function. In
Sec.3, we propose to approximate the EM algorithm by hard-cut
implementation and adaptive algorithms for considerably speeding
up and for on-line processing. Furthermore, in Sec.4, a number of
experiments are made on foreign exchange prediction and trading
investment, which demonstrate that the proposed algorithms and
criterion work well. We conclude in Sec. 5.

2. SMOOTHED EM ALGORITHM AND

SELECTION OF BASIS FUNCTIONS

It can be shown [12, 14] that the above NRBF and ENRBF nets
with gaussian�(r2) = e�r

2

can be obtained from theAlternative
Model for Mixture of Experts (AMME)[11] at the special cases
that each expert is

p(zjx; �j) =
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wherewj;Wj; cj;mj;�j are exactly the same as in eq.(1). More-
over, by changing the gating net, we may also obtain their variants
with different basis functions�(r).

The EM Algorithm for training the AMME [11] can be di-
rectly used for learning in NRBF and ENRBF nets. Moreover,
via showing that the AMME is a special case of the recent pro-
posedBayesian Ying-Yang (BYY)learning system and theory [13,
14, 10], we can get a smoothed variant of EM algorithm for the
cases of finite numberN of samples by using the kernel estimate
to replace empirical estimate of densities.

The Smoothed EM Algorithm-RBF
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and then (a) for an NRBF net, update
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and (b) for an ENRBF net, update
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Particularly, when�j = 2j I, which is widely assumed in the
literature, theupdating on�j can be simply

2j = hz(j) + N�1

kX
j=1

NX
i=1

h(jjxi)kzi � rnewj k2; (8)

In the above equations,hx(j); hz(j) are the smooth parame-
ters used in the kernel density estimate, roughly according to The-
orem 20 in [9].Cx; Cz are two heuristic constants. In the special
cases ofhx(j) = 0; hz(j) = 0, the above EM algorithm returns
exactly to the EM algorithm given in [12, 14].

Furthermore, from the fact that the AMME is a special case
of the BYY learning [13, 14, 10], we can get a model selection
criterion for determining the number of experts. This criterion
can be also used for determining the number of basis functions
by k� = argmink J(k) with J(k) being eitherJ1(k) or J2(k):
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where ‘�” denotes the estimated values for the parameters after a
learning algorithm, e.g., the above smoothed EM algorithm eq.(7).

Taking J2(k) as an example, we can intuitively understand
how the above criteria work. Its first term will decrease ask in-
creases and its second term will increase ask increases and thus
trades off the bestk�. This point can be even more clearly ob-
served by letting��j = ��,��j = �� and��j = 1=k such that

J2(k) = 0:5(ln j��j+ ln j��j) + lnk: (10)

Obviously,ln k increases ask increases, andj��j; j��j decreases
ask increases for a given numberN of samples.

From eq.(10), we can also see that in different from their un-
smoothed versions , the effect of the smoothed estimatesj��j; j��j
by the above smoothed EM algorithm is to reduce the decreasing
speeds ofj��j; j��j ask increases in the cases of finite number
samples so that the over-fitting can be penalized.

3. HARD-CUT AND ADAPTIVE ALGORITHMS

Actually, h(jjxi) is a posterior probability of assigning the map-
ping task of the pairxi ! zi to the j-th basis function. Alter-
natively, this soft assignment can be approximated by a Winner-
Take-All (WTA) competitionaccording to Bayesian decision via
replacingh(jjxi) in the M-step ofEM algorithmwith the follow-
ing hard-cut indicator:

I(jjxi) =

n
1; if j = argminrf� logh(rjxi)g,
0; otherwsie.

(11)

Although some accuracy may be lost in performance (as will be
shown later by experiments, this loss can usually be ignored), it



may bring two advantages.First , it can speed up considerably,
not only because the multiplication with h(jjxi) is not needed and
the summation of the terms withI(jjxi) = 0 can be saved, but
also because the computing cost forh(jjxi) can be considerably
reduced since the computing forI(jjxi) is significantly simplified
by omitting those irrelevant computations.Second, it can speed
up the convergence. After running for a certain period, the EM
learning usually slows down considerably, sometimes it will be-
come very slow. In this case, we can switchh(jjxi) into I(jjxi),
which can obviously speed up the convergence, without affecting
the performance too much.

When applied to nonlinear signal learning and processing, such
as prediction of foreign exchange rate, we need that the learning is
made adaptively on line. In the following, we turn the batch way
EM algorithm an adaptive for such a purpose:

The Adaptive EM Algorithm-RBF
E Step: Fix �old, to geth(jjxi) in the same way as in the

batchEM Algorithm-RBFin Sec.2 or to getI(jjxi) by eq.(11).
Then let�j;i be given by

Either�j;i = �0h(jjxi)=�j ; or�j;i = �0I(jjxi)=�j; (12)

with �0 being a prefixed learning rate andh(jjxi) or I(jjxi)mod-
ifying this rate adaptively.
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The initialization of parameters will affect the performance of
adaptive algorithms. For the practical problems like financial data
prediction, we usually have quite limited number of sample points,
thus using an adaptive algorithm alone can not bring any real ad-
vantage.In this case, we suggest to first use the batch algorithm
on a training set to get a solution as an initialization, and then to
use the above adaptive algorithm to keep tracing the changes of
data on the testing data via adaptation once a new data point is
available.

4. EXPERIMENTS

Experiments are made on comparing the following algorithms:
(a) The conventional two-stage training algorithms [6][4] for

NRBF and ENRBF nets, denoted by NRBF 2-stage and ENRBF
2-stage, respectively;

(b) The batchEM Algorithm-RBF, denoted by EM-NRBF and
EM-ENRBF for NRBF net and Extended NRBF net respectively;

(c) The batchEM Algorithm-RBFwith hardcut technique, de-
noted by EM-NRBF (HC) and EM-ENRBF (HC) respectively;

(d) The Adaptive EM Algorithm-RBF, denoted by Adaptive
EM-NRBF and Adaptive EM-ENRBF respectively;

A FOREX rate data for USD-DEM with 1112 samples (Nov.
25,1991- Aug 30,1995) and a real stock price data of 380 samples
from Shanghai stock market are used. On the USD-DEM Forex
data, two type of partitions of the training and testing sets are used.
For the Type A, the training size is the first 1000 samples and the
testing size is the subsequent112 samples. For Type B, the training
size is first 100 samples and the testing size is the subsequent 1012
samples. For the real stock price data, the first 350 samples used
as the training set and the subsequent 30 samples as the testing set.

In all the experiments, the initialization of the parameters and
its variants are made randomly in their corresponding domains,
e.g.,�j is initialized at a positive definite matrix. According to
our experience, we usex = [x(t� 1); x(t� 2); x(t� 3)] as our
input vector at the timet.

Shown in Tab.1 are the results of using 20 basis functions. We
observe that EM-NRBF indeed improves the two stage algorithm
considerably. We can also see that the computing cost of EM-
NRBF (HC) is almost comparable to the conventional algorithm,
which is a significant speeding up from EM-NRBF before hardcut
that is about one or two magnitudes slower. Moreover, further in-
creasing the number of basis functions will not obviously improve
the results by the two stage algorithm, but its computing cost will
increase fastly and become worse than EM-NRBF (HC).

In Fig.1, the comparison are made on Forex data of USD-
DEM-SET Type B by EM-NRBF (HC) and Adaptive EM-NRBF.
The adaptive algorithm is used to track time series in such a way
that the sample point att is used to modified the network once this
point is known already (i.e., once the current timet is passed into
t+1). As shown in Fig.1, the adaptive algorithm indeed can track
the temporal change very well and outperform its corresponding
batch way algorithm significantly.

Shown in Fig.2, are the comparison results on the real stock
data by EM-NRBF (HC) and Adaptive EM-NRBF. Again, the adap-
tive algorithm can outperform its corresponding batch way algo-
rithm significantly.

We use the simple trading rule proposed in [3] for trading in-
vestment based on the obtained prediction. Forex data of USD-
DEM Type A is used again such that we can compare the result
made in our previously results by the different approaches [3]. We
assume that a trader can hold at most a long or short contract of
foreign dollars or stock at one time. The deposit amount is fixed to
be US$ 6500 and the transaction cost rate is 0.5% of the deposit.

The results are shown in Tab.2. The adaptive algorithms can
bring significant profit. Especially, Adaptive EM-NRBF on NRBF
net improves its non-adaptive version with the profits being as
large as nearly 3 times. Also, Adaptive EM-NRBF on NRBF net
gives the best result which is a considerable improvement over the
one made on ENRBF net. Moreover, the batch way algorithm
on ENRBF net got an obvious better result over that on NRBF
net. The result given in Tab.2 also provides a considerable im-
provement over the result made in [3], which was compared with
Random walk and AMAR model with significant improvements
already.



5. CONCLUSIONS

The EM algorithm improves the conventional two stage algorithm
considerably for learning in NRBF and ENRBF nets. The hardcut
technique can significantly speed up convergence while still keep
a very good performance. By the adaptive algorithm, we can get
significant improvements on financial predication and trading in-
vestment. For the two stage algorithm, ENRBF net is much better
than NRBF net. However, it is not the case for the EM algorithm
as well as its hardcut and adaptive variants.

Algorithms Flops* Training Testing
NRBF 2-stage 4:81� 105 0:396 1:703

EM-NRBF (HC) II 5:94� 105 0:238 0:768
ENRBF 2-stage 3:91� 105 0:173 0:452

EM-ENRBF (HC) II 3:96� 106 0:151 0:445
� They are training Flops with one flop counted by MATLAB as an

addition or multiplication operation.

Tab. 1 The results of prediction on FOREX rate of USD-DEM-
SET Type A (No. of units = 20), with NMSE error used.

Normalized Testing Error = 0.0840 Normalized Testing Error = 0.0083
(a) by Batch way EM-NRBF. (b) by Adaptive EM-NRBF
Fig. 1 The Results of prediction on Forex data of USD-DEM-

SET Type B ( No. of units = 20). In (b), the prediction and the real
data are almost overlapped.

Normalized Testing Error = 0.2320 Normalized Testing Error = 0.0169
(a) by Batch way EM-NRBF. (b) by Adaptive EM-NRBF
Fig. 3 The Results of prediction on the stock price data ( No.

of units = 20). In (b), the prediction and the real data are almost
overlapped.

Algorithms Net profit point Profit in US$
EM-NRBF 1425 9262:5

Adaptive EM-NRBF 3966 25779:0
EM-ENRBF 2063 13406:5

Adaptive EM-ENRBF 2916 18954:0

Tab. 2 The results of trading investment based on the prediction on
USD-DEM-SET Type A (in 112 days)
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