
AN EXPERIMENTAL COMPARISON OF THE BAYESIAN YING-YANG CRITERIA AND
CROSS VALIDATION FOR SELECTION ON NUMBER OF HIDDEN UNITS IN

FEEDFORWARD NETWORKS*

Wing-kai Lam and Lei Xu

Department of Computer Science and Engineering,
The Chinese University Hong Kong, Hong Kong

ABSTRACT

Optimizing the number of hidden units in feedforward neu-
ral networks is an important issue in learning. Recently, a
new criteria on selecting the number of hidden units in feed-
forward neual networks is proposed by one of the present
author, based on the so-called Bayesian Ying-Yang (BYY)
learning theory. The new criteria can be simply computed
during the implementation of backpropagation training. In
this paper, the criteria is experimentally studied and com-
pared with the well-known Cross Validation approach. Sim-
ulation results show that obtained number of hidden units
by the BYY criteria is highly consistent to the minimal gen-
eralization error and outperforms the Cross Validation ap-
proach.

1. INTRODUCTION

Optimizing the number of hidden unit in feedforward neural
networks is important in two perspectives: One is to reduce
the computation time and the other is to get a high gener-
alization [1]. There are quite a number of methods already
proposed in the literatures of statistics and neural networks.
However, most of them tackle the problem by estimating
the upper or lower bounds on generalization error and usu-
ally difficult to compute in practical implementation. In this
paper, we experimentally study a new criteria on selecting
the optimal number of hidden units in feedforward neural
networks trained by backpropagation. It involves a small
computing cost in implementation. This criteria is proposed
in [8] by one of the present authors, based on the Bayesian
Ying-Yang BYY) learning theory [9,6,7,8]. Experimental
results show that the optimal number of hidden units se-
lected by this criteria is highly consistent with the minimal
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generalization error. The results are compared with the hid-
den unit number selected by a generalization strategy, Cross
Validation [2,4]. The simple computation of the BYY crite-
ria not only outperforms the exhausive training of the Cross
Validation approach in computational cost considerably, but
also in choosing the optimal hidden unit number that mini-
mize the generalization error.

This paper is organized as follows. In Section 2, the
brief review of the feedforward network architecture with
backpropagation training,Cross Validationand the BYY
(Bayesian Ying-Yang) criteria are given. In Section 3, we
present the results of simulations of the criteria through
the simplest three-layered feedforward network architec-
ture. The results are compared with minimal generalization
error and Cross Validation. Then a final conclusion is given
in Section 4.

2. METHODS USED IN COMPARATIVE STUDY

2.1. Three-layered Feedforward Neural Networks with
Backpropagation

Fig. 1 The three-layered feedforward neural network architecture

The fully-connected three-layered feedforward network we
used is shown in Fig. 1. The three layers are input layer,
hidden layer and output layer. The bias signal for both hid-



den units and output units are assumed to be embedded into
the input vectors of both hidden and output layer. So that
the weights connecting the bias signals and units are be-
ing trained and updated as usual weights. The activation
function fh of the hidden units is differentiable nonlinear
function. In our simulations,fh = fh(W

h Tx) = 1=(1 +
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Backpropagation training rule is a supervised learning rule
for adjusting the hidden weights and output weights such
that the following error function is minimized over the train-
ing set:
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The update rule foreach layer are being derived by using
delta rule directly.
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For thej � th of thek hidden units in the hidden layer, we
have,
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wherewlj is the synaptic weight connecting thel � th out-
put unit and thej � th hidden unit. The iterative backprop-
agation learning procedures for three-layered feedforward
neural networks are stated as Eq. 3 and Eq. 5 respectively.
The learning continues unit the algorithm converges. For
details, refer to (e.g. [3,5]).

2.2. Cross Validation [2,4]

Based on [2,4], the whole data set is split into three parts:
training set, validation set and testing set. The training set
is used to determine the internal weights of the networks.
The validation set is used to decide when to stop training.
The testing set is used for estimating the expected perfor-
mance validation (generalization) of the resulted networks.
Usually, Cross Validation is applied to stop-early training.
We adapt the stop-early phenomena in choosing number of
hidden units. Training starts with the training set with a
small number of hidden units. After certain number of it-
erations (assumed larged enough for adapting the problem),
the validation set is used for testing performance. The pro-
cess repeats with one hidden unit increases and stops when
the validation on the validation set cease to improve. Finally
the testing set is used for testing performance of the trained
networks.

2.3. The Bayesian Ying-Yang Learning Criteria [8]

Based on the so-called Bayesian Ying-Yang Learning The-
ory [9,6,7,8], the following criteria is proposed for selecting
the optimal number of hidden units [8],

J(k) = 0:5ln(Edjx)

�
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N
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k
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whereEdjx = �(x;d)2Dx;d
jjd � fo(W

o T fh(W
h Tx))jj2 ,

d = fd1 ; :::; dmg andk , zj ’s are output at the hidden units
as in the Sec. 2.2. is the number of hidden units specified in
the hidden layer. Eq. 6 is tested with variousk . Thek for
the corresponding minimum point is the optimal number of
hidden units.



3. SIMULATION RESULTS

The simulation is based on the architecture shown in Fig.
1. The training procedures those in Section 2.1.1 and 2.1.2.
Two types of problem are simulated for testing, clustering
and function approximation. For clustering, we have two
benchmark data set, IRIS and HAYES-ROTH. For the func-
tion approximation problem, we have generate two curves.

3.1. Clustering Problem

The 4-dimensional IRIS data set consists of 3 clusters with
50 data points each. The first two and last two dimensions
are plotted in Fig. 2 and 3. The 5-dimensional HAYES-
ROTH data set also contains 3 clusters with 44 data points
each.
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Fig. 1 1, 2 dimensions of IRIS Fig. 2 3, 4 dimensions of IRIS

For each cluster in any data set, 1/4 is randomly sampled
out as training set, another 1/4 for validation set and the
rest 1/2 is for testing set. The validation set is only used
for Cross Validation. For each of the algorithms, we exten-
sively specify the number of hidden units starting from 1 to
20. Both hidden unit learning rate�h and output unit learn-
ing rate�o are fixed at 0.03. This number is chosen due to
exhausive trials on different number for the promising bal-
ance between convergent speed and training error on a 4-D
artificial data set similar to IRIS data set. The number of
iterations for each training is100. The results foreach data
set are shown in Fig. 4, 5 respectively.
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Fig. 4 The resulted minimums detected by (a) BYY Criteria, (b)
Cross Validation and (c) Generalization Error on IRIS data set

0 2 4 6 8 10 12 14 16 18 20
1.66

1.68

1.7

1.72

1.74

1.76

1.78

0 2 4 6 8 10 12 14 16 18 20
0.332

0.334

0.336

0.338

0.34

0.342

0.344

0.346

0.348

0 2 4 6 8 10 12 14 16 18 20
0.24

0.242

0.244

0.246

0.248

0.25

0.252

(a) BYY Criteria (b) Cross Validation (c) Minimal Generalization

Fig. 5 The resulted minimums detected by (a) BYY Criteria, (b)

Cross Validation and (c) Generalization Error on HAYES-ROTH
data set

We perform 10 similar tests with different sampled training,
validation and testing data set. The results are summarized
in Table 1.

Trial Criteria C.V. Generalize
1 6 12 6
2 6 12 6
3 8 6 8
4 6 8 6
5 7 8 7
6 7 8 7
7 8 10 8
8 6 11 6
9 6 10 6
10 6 9 6

Trial Criteria C.V. Generalize
1 8 8 8
2 8 9 8
3 7 10 7
4 8 10 8
5 8 10 8
6 7 8 7
7 7 9 7
8 8 9 8
9 8 9 8
10 8 9 8

(c) IRIS Data Set (d) HAYES-ROTH Data Set

Table 1 The resulted number of hidden unit selected by the BYY
criteria (Criteria), Cross Validation (C.V.) and minimal generaliza-
tion error (generalize) for various data set with different trials

As noticed from Table 1, the number of hidden unit selected
by the BYY criteria always match the minimal testing error.
However, it is not Cross Validation can. Moreover, the num-
ber selected by Cross Validation is usually larger.

3.2. Function Approximation Problem

We generate two different curves in the range[0; 10]. They
are shown in Fig. 10 and 11 respectively.

0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Fig. 10 The Curve 1 Fig. 11 The Curve 2

We randomly sample 10 points in range[0; 10] for train-
ing set. Then 10 points for validation set and 20 points for
testing set. Again, the validation set is only for Cross Vali-
dation. The number we choose for�h and�o are both 0.01.
This is again result after an exhausive testing on another ar-
tificial curve generated in the same range. The results are
shown in Fig. 12 and 13 respectively.
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Fig. 12 The resulted minimums detected by (a) BYY Cri-
teria, (b) Cross Validation and (c) Minimal Generalization
Error on curve 1
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Error on curve 2

Again, we perform ten tests with different sampling for
training, validation and testing data set, the results are sum-
marized in Table 2.

Trial Criteria C.V. Generalize
1 8 10 8
2 8 8 8
3 7 8 7
4 8 7 8
5 8 9 8
6 7 9 7
7 7 9 7
8 7 9 7
9 7 9 7
10 7 9 7

Trial Criteria C.V. Generalize
1 4 5 4
2 4 5 4
3 4 5 4
4 5 5 5
5 5 5 5
6 5 5 5
7 4 5 4
8 4 6 4
9 5 4 5

10 5 5 5
(a) Curve 1 (b) Curve 2

Table 2 The resulted number of hidden unit selected by the BYY
criteria (Criteria), Cross Validation (C.V.) and minimal generaliza-
tion error (generalize) for various curves with different trials

As noticed from Table 2, similar to the clustering case, the
number of hidden unit selected by the criteria always match
the minimal testing error. It is not the case for Cross Vali-
dation. The number selected by Cross Validation is usually
larger.

4. CONCLUSIONS AND FUTURE WORKS

The BYY criteria for selecting an optimal number of hid-
den unit is experimental proven that can select the hidden
unit number with minimzed generalization error. It outper-
forms Cross Validation in selecting the appropriate hidden
unit number for both clustering and function approximation.
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