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Abstract

The parallel model combination (PMC) technique
has been shown to achieve very good performance for
speech recognition under noisy conditions. In this approach,
the speech signal and the noise are assumed uncorrelated
during modeling. In this paper, a new correlated PMC is
proposed by properly estimating and modeling the nonzero
correlation between the speech signal and the noise.
Preliminary experimental results show that this correlated
PMC can provide significant improvements over the
original PMC in terms of both the model differences and
the recognition accuracies. Error rate reduction on the
order of 14% can be achieved.
  

1. Introduction

While practically used in real world applications,
many speech recognition systems often can’t perform as
well as it could during the controlled training environment.
This performance degradation is mainly due to the
mismatch between the training and test conditions, in
which the mismatch in noisy conditions is usually very
important. In order to achieve robust speech recognition in
various noise conditions, substantial research efforts have
been made and many good algorithms have been proposed.
Some of them used noise resistant speech feature
parameters. Some of them tried to perform the
compensation in either the speech feature domain or the
speech model domain. For the speech model compensation
methods, the Parallel Model Combination Method (PMC)
[1, 2] has been one of the most popular approaches with its
effectiveness to handle the additive noise well confirmed
by many experiments and systems. With the PMC method
the approximated noisy speech HMM’s can be derived as
long as the Noise HMM and the pre-trained clean speech
HMM’s are available. In this way the difficulties in
collecting enormous noisy speech data to retrain the noisy
speech HMM’s can be avoided, and only a small amount of
noise data are required to train the noise HMM. The key
concept of PMC is that the noise is additive in the linear
spectral domain. Therefore the cepstral-based parameters
of the clean speech HMM’s and the noise HMM must be
transformed to the log-spectral domain or the linear
spectral domain in order to perform the combination, and
then inversely transformed back to the cepstral domain for
normal recognition process.

Nevertheless, the linear combination of speech and
additive noise in the linear spectral domain does not
necessarily provide very good results in many cases as
expected [3]. One possible reason for it, among many
others, may be due to the possible correlation between
speech and noise, which was not modeled very well in the
original PMC method. Such correlation can be observed
during the short-term analysis for feature extraction, and
the nonzero noise mean could be a possible source of it [4],
as will be clear later on. A good example phenomenon is
that the PMC method usually doesn’t operate as well while
SNR becomes worse, in which the nonzero noise mean
may become larger. As a result, it is expected that if such
correlation between speech and noise can be adequately
considered and well modeled, the accuracy of the resulting
HMM’s may be improved. Such an approach is presented
in this paper, and the initial experimental results indicate
that this may be a correct direction.

The remainder of the paper is organized into 4
sections. The PMC method is briefly summarized for
further development purposes in section 2. The correlation
mentioned above is then discussed and modeled in the
basic PMC method in section 3. Section 4 then presents
some preliminary experimental results using this correlated
PMC method.

2. Parallel Model Combination

 The PMC method generates noisy-speech-like
models by combining clean speech HMM’s and a noise
HMM. The HMM cepstral parameters must be mapped to
the linear spectral domain for combination. The detailed
procedures can be summarized as the following steps,
where c and c are the clean speech mean and variance

respectively in the cepstral domain, l and l the log
spectral domain, and  and  the linear spectral domain.
Where the noise distributions need to be indicated a “ ̂ ” is
used and for the estimated corrupted speech distributions a
“  ~ ”, thus for instance, cˆ and c~  are the noise and
estimated noisy speech cepstral means respectively. The
factor g is a gain matching term dependent on SNR.
1. Inverse DCT transformation

 cl C 1−=                  (1)

 Tcl )( 11 −−= CC               (2)
  where C is the matrix for DCT.



2. Exponential transformation
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3. Composition
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5. DCT transformation
lc C ˆ ˆ =                   (9)
Tlc CC ˆ ˆ =                 (10)

3. Correlated PMC

Although under most noisy environments the PMC
method can provide significant improvements in
recognition rates as compared with the HMM’s trained
with clean speech, very often there still exists a
performance gap between PMC and the HMM’s trained by
noisy speech under matched conditions, and usually this
gap becomes wider when SNR becomes worse. There can
be many reasons for this. The inaccuracy in the log-normal
approximation in the logarithm transformation process
could be one, while the correlation between the speech
signal and noise as pointed out here could be another. This
will be discussed below.
Let S , N  and X  be the spectra of the clean speech, the
noise and the resulting noisy speech signal, respectively,

NSX +=                 (11)
During the feature extraction process, the signal plus

noise was filtered by a set of Mel-scale filters in parallel.
At the output of filter j, the power of the noisy speech

signal for a given signal frame, 
2

jx , is given by
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where jS  and jN are the corresponding filter output for

clean speech and noise respectively. So the mean value of
2

jx  is
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In PMC method, it is assumed that the speech signal and
the noise are uncorrelated, therefore the correlation term

{ }( )*Re jj NSE  in eq (13) equals zero. This is the way to arrive

at a tractable solution. However, this assumption may not
necessarily be true in short-term analysis for feature
extraction, in which the noise is certainly not stationary,
and usually not zero mean. In such cases, the nonzero

correlation term { }( )*Re jj NSE  may not be negligible,

especially under low SNR conditions.

  Due to lack of the complete information in

estimating the correlation term { }( )*Re jjNSE  in PMC

processes, the estimation may be performed by
approximation as follows. First,

{ } ( )
jj NSjjjj NSNS θθ −= cosRe *        (14)

where  ( )
jSjj jSS θexp=  and ( )

jNjj jNN θexp=

so
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   If we assume that jS , jN and ( )
jj NS θθ −cos  are

mutually independent, then eq (15) becomes
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Furthermore, because of the inequality
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we can have

( )jSE = 2

1
2

 














jj SEα

and

( )jNE = 2

1
2

 














jj NEβ

where 1 , 0 ≤≤ jj βα , then eq (16) can be rewritten as

then
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where jγ is defined as

( )( )
jj NSjjj E θθβαγ −= cos .        (18)

Because the terms 





 2

jSE  and 




 2

jNE  are both known

parameters, the only variable to be determined is jγ . In

the next section, we will show that by proper choice of jγ ,

the performance of the PMC compensated HMM can be
improved. Hence, the part different from the original PMC
method is in the composition process, i.e. in eq (5),

jjjjjj gg ~2~ˆ •++= γ        (19)

for each component of ˆ .

4. Experimental Results

Some preliminary experiments were performed to
verify the concept mentioned here. The training speech
database used in the experiments contains 3 sets of 1345



isolated syllables in Mandarin Chinese produced by a
speaker. It is used to train 113 right context-dependent
(RCD) INITIAL HMM’s and 41 context-independent (CI)
FINAL HMM’s. Another set of 1345 syllables produced by
the same speaker is used as the test data to be recognized in
speaker dependent mode. 14 order mel-frequency cepstral
coefficients are used as the feature parameters. Also, the
continuous density HMM (CHMM) is trained with 1 state
per INITIAL model, 2 states per FINAL model and 2
mixtures per state. Noise HMM’s for different levels of
white noise to be added into the clean speech are also
individually trained, composed of one state and one
mixture per state. Furthermore, HMM’s are also trained
with the noise corrupted speech data.

We first examine the mismatch of the original PMC-
based HMM’s and the correlated PMC HMM’s proposed
here with respect to HMM’s trained with noisy speech.
Figure 1 shows the spectral envelopes for the 3 sets of
models averaged over all the 113 INITIAL models and 41
FINAL models at SNR of 30, 20 and 10 dB. The mean and
standard deviation values of the differences between the
spectral envelopes for the two versions of PMC-based
HMM’s and the HMM’s trained with noisy speech are also
listed in Table 1. Apparently, the deviations between both
PMC-based models and the models trained with noisy
speech are different at different mel-frequency values.
From both the figure and the table, it’s obvious that the
difference between the models increases as the SNR

becomes worse. Since the term { }( )*Re jj NSE  increases with

)(
2

jNE  in Eq (17), it is reasonable to say that the

deviations may be due to, at least partially, the lack of good

estimation of the term { }( )*Re jj NSE . It is also clear from

both the figure and the table that the correlated PMC model
proposed here made reasonable estimates of the term

{ }( )*Re jj NSE , thus resulted in relatively smaller deviations

as compared to the original PMC.

(a) SNR=30dB

(b) SNR=20dB

(c) SNR=10dB
Figure 1. The spectral envelopes under various SNR

Original PMC HMM’s Correlated PMC HMM’s
SNR mean std. mean Std.
30dB 2.00x105 2.50x105 7.82x104 2.51x105

20dB 5.29x105 4.82x105 1.44x105 4.58x105

10dB 1.79x106 1.17x106 5.73x105 1.11x106

Table 1. The mean and standard deviation values of the
differences between the spectral envelopes for the two versions of
PMC-based HMM’s and the HMM’s trained with noisy speech

The next test is on the model distance measures using
the averaged Kullback-Leibler (KL) number. For Gaussian
distributed variables, the KL number is defined as [5]:
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where p is the true distribution and q is the estimated
distribution. The model distance is then obtained by
averaging all the KL numbers between each pair of
corresponding Gaussian distributions on a per feature
vector component basis. For the correlated PMC method
proposed here, the correlation parameter jγ  was chosen

as 0.5. The average KL numbers for clean speech HMM’s,
original PMC HMM’s and the correlated HMM’s proposed
here with respect to the noisy speech HMM’s  at different
SNR values are shown in Table 2 and Fig. 2. It is clear
from Table 2 that the original PMC method can
significantly reduce the model distance, while in all cases
the correlated PMC method proposed here can further



reduce the model distance to a certain extent. This is also
clear from Fig. 2.

SNR[dB] 30 25 20 15 10
Clean 0.513 0.771 1.087 1.429 1.819

PMC HMM 0.107 0.183 0.160 0.154 0.165
Correlated PMC

jγ =0.5 0.099 0.160 0.149 0.145 0.158

Table 2. Averaged KL numbers between the different versions of
models and the noisy speech model.
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Figure 2. The comparison of averaged KL numbers for original
PMC and the correlated PMC proposed here.

Correlated PMC HMM’s
SNR
(dB)

Clean
speech

HMM’s

Noisy
Speech
HMM’s

Original
PMC

HMM’s

jγ

=0.3
jγ

=0.5
jγ

=0.7
jγ

=0.9
30 48.33 80.67 74.28 76.88 77.55 77.25 78.36
25 33.09 77.32 63.57 69.29 69.52 69.44 69.44
20 14.42 71.15 49.89 56.73 57.55 57.03 59.26
15 5.13 60.74 36.80 45.80 46.69 46.62 46.77
10 2.01 49.74 27.66 36.65 36.88 37.25 36.80

Table 3. Recognition accuracies using different versions
of models
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Fig.3 Recognition accuracies using different versions of models

Finally, the recognition accuracies using different
versions of models are compared in Table 3 and Figure 3.
One can find in the second column that the recognition
accuracies are seriously degraded using the clean speech
HMM’s, especially when SNR becomes worse. However,
when the noisy speech HMM’s are used, the recognition
rates (in the third column of Table 3) can be significantly
improved, but it is time-consuming and cost-intensive in

training these noisy speech models. In the original PMC
models, only a short period of noise is used, thus is
practically much feasible. As can be found in the fourth
column of Table 3, the recognition performance is
improved significantly when SNR is high, but the
improvements are reduced when SNR becomes lower.
However, the correlated PMC proposed here (listed in the
last four columns) always provides better compensation
compared to the original PMC, especially in the low SNR
cases. The accuracies now are actually much more closer to
the results of the noisy speech models in the third column.
For instance, in comparison with the original PMC, the
choice of jγ  =0.5 in correlated PMC reduces the error

rate by 12.71%, 16.33%, 15.29%, 15.65% and 12.75% for
SNR values of 30dB, 25dB, 20dB, 15,dB and 10dB
respectively. Clearly the added nonzero correlation term in
eq (17) not only reduces the model distances but also
improves the recognition accuracy. As was shown in the
experimental results, by simple but proper assignment of
the value jγ , the performance of the compensated HMM

can be significantly enhanced. It is believed that the
recognition performance can be further improved with
more careful choice of the parameter value.

5. Conclusion

In this paper, it is shown that better estimation of the
correlation term in the original PMC method can produce
much better acoustic models and accuracies for speech
recognition under noisy conditions, especially when SNR
is low. It is believed that the performance of the PMC
method can be further improved if more precise estimation
of the correlation can be applied.
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