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ABSTRACT

In the H.263 Version 2 (H.263+) coding standard, the global
motion compensation can be introduced by using Reference
Picture Resampling (Annex. P) syntax. Such an application
requires that the global motion parameters be estimated au-
tomatically. In this paper, we propose a global motion esti-
mation algorithm based on the Taylor Expansion Equation
and robust regression technique using probabilistic thresh-
olding. The experimental results confirm that the proposed
algorithm can improve both coding efficiency and the qual-
ity of motion compensation on sequences involving camera
movement.

1. INTRODUCTION

Motion estimation and motion compensation techniques are
widely used in the video compression algorithms. However,
the motion caused by camera movement has not been taken
into separate consideration[3, 5] until recent development of
MPEG-4 video and H.263+ coding standards[4]. This de-
velopment leads to the introduction of global motion esti-
mation and global motion compensation. The global motion
presented in the image sequence normally consists of com-
plex motion pattern and often “contaminated” by the local
motion caused by independent moving objects in the scene.
Such a situation requires that the global motion algorithm be
capable of dealing with complex motion model as well as lo-
cal motion contamination.

To address the requirement for global motion estimation,
some researchers have proposed approaches based on a so
called pan-zoom motion model[2, 1] in which a zoom fac-
tor and two translational parameters are used to described
the global motion field. However, the assumptions for pan-
zoom motion model cannot hold well in video conference
applications where the distance between the camera and shoot-
ing targets is limited. Furthermore, becasue of the use of
differential coding of motion vectors in H.263, any global

translational motion field can be encoded very efficiently. This
is due to the fact that a zero motion field (compensated by
the global motion compensation) and a constant motion field
(not compensated by the global motion compensation) will
make little difference in coding efficiency for motion vec-
tors. The extra overhead in sending global motion param-
eters may even reduce the coding efficiency on such kind
sequences. Thus, the simple pan-zoom motion model may
only gains when there is a zooming field present. A more
general approach is to use 6-parameter affine motion model
which can described as:

u(x; y) = a0 + a1x+ a2y

v(x; y) = a3 + a4x+ a5y
(1)

for the global motion field[7] which can deal with majority
of motion type encountered in video sequence coding.

2. GLOBAL MOTION ESTIMATION

The difficulty of using affine motion model is due to its high
computational demand and the influence of local motion vec-
tors. In our earlier approach[7], the affine motion parameters
were obtained by using a Robust Hough Transform (RHT)
based method which can separate the global motion field from
local motion field during the estimation process. However,
the computational load increases in geometric order as the
number of parameters increases in the RHT algorithm which
requires a search in the parameter space. Another method is
to use Taylor expansion equations to derive the affine motion
parameters from a set of local motion estimates as described
in [6] which suggests to use randomly selected 3 block match-
ing results for median based robust regression. The perfor-
mance of the robust regression may vary due to the random
selection process or large amount of iterations are needed
to achieve a stable results. Here, we extend the idea in [6]
and develop an analytic based global motion estimation al-
gorithm and robust regression technique which maintain the



low computational load of Taylor Expansion based affine mo-
tion estimation while obtain the ability to reduce the influ-
ence of local motion to certain extend in a limited number
of iterations.

To reduce the computational load, a set of sparsely sam-
pled points in the image frame are used as the block centre to
calculate the best matching displacement (p; q) and its sur-
rounding 3�3 positions’ compensation error. The number
of sampled points depends on the image size and normally in
the range of 49 to 500. The sampled points should be evenly
distributed inside the image frame.

Using the Taylor expansion equation, the local compen-
sation error function at a block position (i; j) can be expressed
by
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Let S be the 3�3 values of motion compensation error
surrounding the best matched displacement (p; q) as

S = (e(p� 1; q � 1); e(p� 1; q); e(p� 1; q + 1); (3)

e(p; q � 1); e(p; q); e(p; q + 1);

e(p+ 1; q � 1); e(p+ 1; q); e(p+ 1; q + 1))t

where e(x; y) denotes the value of motion compensation er-
ror at position (x; y). Using differential operators, the partial
derivative items in Equation (2) can be expressed as:
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To facilitate discussion, we rewrite Equation (1) in a matrix
form as: �

u

v

�
= P(xij )a (5)

where
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0 0 0 1 xij yij
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t

If we substitute (u; v) in Equation (2) by Equation (5),
the global motion estimation can be obtained by minimisingX

i;j

Ei;j(P(xij )a) (6)

where xij denotes the centre position of the block (i; j). It
leads to Eular equation as
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By solving the Equation (8), we can obtain the affine coeffi-
cients as

a = A
�1
b (9)

3. ROBUST REGRESSION

Because of the presence of local motion, the above proce-
dure cannot guarantee an accurate estimation of the global
motion parameters without eliminating the influence of local
motion. Here, we propose a robust regression method based
on the statistic distribution of the compensation error and use
a pair of probability thresholds to classify inliers and out-
liers. The basic idea of this method is to assume that in each
iteration, only a small portion of the compensation error is
much greater than the average compensation error. Those
points have a compensation error much greater than the aver-
age compensation error should be identified as outliers. This
classification is based on the assumption that the motion pa-
rameters are computed only using inliers. Apparently, when
some of the points in the inlier set are classified as outliers,
the original assumption is no longer valid. Furthermore, as
the previous classification of inliers and outliers is not com-
pletely validated, we need to check the outlier set to see if
there is any mis-classification in the previous iteration. We
assume that compensation error of a mis-classified point is
smaller than a threshold close to the mean of compensation
errors for inliers. When this process repeated certain num-
ber of times, we shall be able to separate points under influ-
ence of local motion from those points contributing to global
motion only. The whole robust regression procedure can be
described as follows:



1. For all M points, where M is the total number of sam-
pled points used for global motion estimation, using
block matching algorithm calculate the best match (p; q)
for each point and its surrounding 3�3 values of mo-
tion compensation error. Using Equation (3) and (4)
to calculate derivative items.

2. Mark all M points as inliers and set the iteration counter
to N.

3. Estimate global motion parameters using only inliers;

4. Calculate the motion compensation error for each cen-
tral point using Equation (2), (4) and (5).

5. Calculate the mean and standard deviation of values
of the motion compensation error for all inliers using:
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where K is the number of inliers.

6. Calculate the upper threshold and lower threshold us-
ing

Tupper = �E + Cupper�

Tlower = �E + Clower�
(12)

where �E and � are the mean and the standard devi-
ation of the compensation error as given in (10) and
(11),Cupper andClower are constants. Both constants
correspond to probabilities in Normal distribution. Given
a pair of predetermined probabilityPupper andPlower,
the constants Cupper and Clower can be obtained by
solving:
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7. For all inliers, if an inlier’s motion compensation error
is greater than the upper threshold, it is marked as an
outlier.

8. For all outliers, if an outlier’s motion compensation
error is less than the lower threshold, it is marked as
an inlier.

9. Decrease iteration counter by one; if the iteration counter
is greater than zero, then goto step 3; otherwise return
the estimated parameters.

The robust regression procedure effectively improves the ac-
curacy of global motion estimation when local motion is present.
However, the computational load is much higher due to the
iteration procedure. Because of the way we classify outliers
and inliers, the minimum number of iterations can be esti-
mated by the following equation:

Imin =
log(Pupper)

log(Plower)
(14)

where Pupper and Plower are the probabilities correspond-
ing to Cupper and Clower respectively, as defined in Equa-
tion (13).

4. EXPERIMENTAL RESULTS

The experiments were carried out using several CIF image
sequences with global motion. We use evenly sampled 81
points in the image as the centre for block matching with a
window size of 15�15. The search windows are of the size
of 64�64. ThePupper andPlower are fixed at 0.975 and 0.64
respectively which correspond to Cupper and Clower being
1.96 and 0.36 respectively. The minimum required iteration
number using the given Pupper and Plower is 17.627. In our
experiment, 20 iterations are used for the robust regression.
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Figure 1: Bits spending on motion vector coding

Figure 1 gives the comparison results on the number of
bits used for motion vector coding for “MIT” sequence. It
can be seen that the use of global motion estimation and global
motion compensation effectively reduce the number of bits
required to encode the motion vectors. The curve shows that
the gain from the use of global motion compensation varies
from frame to frame.



Sequence INTRA Blocks INTER Blocks
NoGMC GMC NoGMC GMC

Bus 550 445 1025 1134
Mall 512 411 1031 1119
MIT 53 6 1503 1539

Table 1: Number of INTRA and INTER coded blocks

Further investigation shows that the use of global motion
compensation can significantly reduce the number of blocks
being encoded in INTRA mode (and increase the number of
blocks being encoded in INTER mode). Table 1 gives the
comparison results on coding mode for the test sequences.
It is clear that the use of global motion compensation on se-
quences with global motion can effectively improve the qual-
ity of motion compensation which is indicated by the reduc-
tion of the number of INTRA coded blocks (where motion
compensation fails). Because of the increase in the number
of blocks being coded in INTER mode, the number of mo-
tion vectors also increases. This may explain why the num-
ber of bits used for encoding motion vectors increases some-
times for GMC enabled algorithm.

The coding performance comparison is given in Table 2.
The results show that significant gain comes from sequences
with complex motion pattern like “MIT”. In spite of only
panning is involved in sequence “Bus” and “Mall”, the global
motion compensation still gains due to the fact that the close
range panning of camera will result in a perspective motion
field rather than the pure translational motion field. As we
have mentioned in the introduction, if the global motion is a
pure translational motion, the use of global motion compen-
sation may not gain any thing. Therefore, the use of affine
motion model is justified even for sequences only involving
pan and tilt movement of the camera.

Sequence PSNR (dB) Bitrate (kbits/sec.)
NoGMC GMC NoGMC GMC

Bus 30.11 29.97 514.43 505.27
Mall 33.67 33.51 198.57 195.34
MIT 29.80 29.67 356.54 318.08

Table 2: Performance comparison - PSNR and Bitrate

5. CONCLUSION

In this paper, we extended work on global motion estimation
algorithms based on block matching and the Taylor Expan-
sion Equation. The advantage of using the Taylor Expan-
sion Equation is to avoid computationally expensive high-
dimensional search for the affine parameters. To reduce the
influence of local motion, a robust regression technique us-
ing probabilistic thresholding is proposed. Given the required
probability threshold, the minimum number of iterations can
easily be determined so that any unnecessary iterations can
be avoided. The experimental results show that the use of
global motion compensation can improve the coding efficiency
on sequences involving complex global motion field. It also
indicates that the use of global motion compensation can im-
prove the quality of motion compensation so that the number
of INTRA coded blocks is reduced. The gain on sequences
only with close range camera panning show that the exis-
tence of complex motion in such kind of sequences in which
the simple pan-zoom motion model may not work very well.
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