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ABSTRACT

We present a progressive refinement approach to M-ary detec-
tion problems. The approach leads on average to a logarithmic re-
duction in the complexity of the detector. It relies on designing
binary decision trees that trade complexity with probability of er-
ror. We also discuss simplified solutions that can be used in several
cases of interest in wireless communications such as CDMA mul-
tiuser detection and blind equalization.

1. INTRODUCTION

M-ary hypotheses testing problems arise in many applications in-
cluding wireless communications (e.g., CDMA receivers, blind equal-
ization, etc..), target recognition, surveillance and information fil-
tering. The complexity of the M-ary testing problem is linear in the
number M of possible hypotheses. In many cases, the number M
of hypotheses to be tested is large and may be related exponentially
to another parameter. For example, we will show below that in the
blind equalization problem the noiseless data lies in one plane out
of M possible planes. By finding that plane we can detect the data
and provide a Maximum Likelihood estimate to the channel. This
is an M-hypotheses detection problem, where M is exponential in
the length of the channel and the length of the data vector that we
are considering. A large M effectively precludes the use of opti-
mal Bayesian approaches to solving the M-ary testing problems.
This is one reason why an optimal Bayesian approach is not usu-
ally used for solving blind equalization problems in wireless com-
munications.

In this paper we provide a progressive refinement approach to
the M-ary testing problem. The main advantage of this approach
is its almost logarithmic reduction in complexity. Specifically, we
use a binary decision tree to arrive at our decision. Each node of the
tree represents a subgroup of the M hypotheses. The cardinality
of these subgroups decreases with the depth of the tree. The termi-
nal leaves of the tree represent individual hypotheses. Subgroups
corresponding to non-leaf nodes at a given level of the tree need
not have an equal number of hypotheses. Furthermore, these sub-
groups are not mutually exclusive. The depth of the tree depends
on the M-ary hypotheses testing problem under consideration. We
propose an approach for constructing such decision trees. The ap-
proach is similar to the well-known techniques that are used to de-
sign tree vector quantizers with one major difference. Specifically,
we split nodes or subgroups of hypotheses by clustering the hy-
potheses in the subgroup based on the distances between the signals
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or signal planes that correspond to the different hypotheses. We as-
sociate representative signal or signal planes to each subcluster by
identifying decision boundaries that minimize the cardinality of the
cluster with maximum cardinality at each level of the tree. How-
ever, since we allow subgroups of hypotheses to overlap, we must
decide at each step whether we should associate to each child node
all the hypotheses that cover the subregion of the decision space
that is identified with the node. By dropping one or more hypothe-
ses from the subgroup, we effectively associate the subareas of the
decision space linked to these hypotheses that fall in the subspace
identified with the parent node to other hypotheses. This of course
increases the probability of error but decreases the final complexity
of the procedure. The final decision tree is obtained by optimally
trading probability of error and complexity. Our approach has been
observed to yield on average a logarithmic reduction in complexity
with tree depths close to log2M . Note that our approach may be
viewed as a non-iterative design technique for classification trees
that uses models for the hypotheses rather than training data as in
the usual CART scenario [1].

We also describe simple alternative approaches that are eas-
ier to design and can be used in several cases of interest in wire-
less communications such as CDMA multiuser detection and blind
equalization.

This paper is organized as follows. In Section 2, we will ex-
plain how the problems of blind equalization, subset selection and
CDMA multiuser detection can be posed as M-hypotheses prob-
lems. In Section 3, we describe our approach to progressive M-
ary hypotheses testing. We provide simple approaches in 3 special
cases in detail. Case 1 involves known signals observed in white
Gaussian noise. Case 2 involves known signals multiplied by un-
known scalar gains observed in white Gaussian noise. Finally, case
3 deals with the blind equalization problem where signals are known
to lie in certain planes. We conclude with simulation examples that
compare the performance of the proposed approach to the optimal
exhaustive search.

2. M-ARY HYPOTHESES PROBLEMS

Let us begin by briefly reviewing several problems that may be viewed
as M-ary hypotheses testing problems with large values of M . The
first two problems arise in communications. The third problem is
a generalization of problem 2.

2.1. CDMA multiuser detection
Code division multiple access have been approved as the new stan-
dard in cellular phones. Here, each user is assigned a specific se-
quence, called signature. The transmitted waveform would be this
signature multiplied by the transmitted bit stream. The receiver is



required to obtain the bits of all the different users. This is why the
signatures are chosen so as to minimize their correlation [2]. An
optimal receivers perform the following operation

max
all possible combinations

of user bits x

p(rjx) (1)

where r is the received signal. We form the M hypotheses as all
possible combinations of user bits. For example if each of the n
users uses a Quadrature Amplitude Modulation ( QAM ) constel-
lation, then we have M = 4n possible received vectors forming
our hypotheses. Notice that we can always add a ’0’ to mark an in-
active user and therefore we would have a 5n hypotheses problem
instead.
2.2. Blind Equalization
Intersymbol interference (ISI) occurs when data symbols from a
particular constellation are sent over communication channels. These
channels are generally non ideal, and so they have a certain im-
pulse response with which the input data stream is convolved. A
receiver, in order to detect the transmitter symbols, has to equalize
the channel, i.e. deconvolve these two signals. Classically, in de-
riving the optimum equalizer, the channel is assumed to be known.
If the channel is not known and/or changes, the transmitter sends
an agreed upon transmitting sequence which help the receiver in
identifying the channel. Once the channel is identified, it can be
inverted. Practically, a training sequence was used to train an adap-
tive filter so that the combined response of the channel and the equal-
izer is an impulse response, and hence the stream output from the
equalizer is free of ISI. If the channel changes, then the transmitter
has to re-send a transmitting sequence on agreed upon intervals. In
many communication applications, especially in wireless commu-
nications where a number of users share limited resources, and the
channel might change often, transmitting a training sequence occu-
pies part of the bandwidth, and, for example, in time division mul-
tiple access, occupies a portion of the time assigned to every user.
An increase in the capacity of such systems can be achieved if the
receiver was able to equalize the channel without using a training
sequence. Several methods appeared in the literature for achieving
this [7][8] [9][10]. We can write the received signal as

y(n) =

L�1X
k=0

h(k)x(n� k) + w(n) (2)

where y(n) is the sampled output of the matched filter, x(n) are
the transmitted symbols, h is the combined transmitting waveform,
channel and matched filter, and w(n) is white noise. This equation
can be written in a matrix form as

Xn
~H + ~wn = ~Yn (3)

where

Xn =

"
x(n) x(n � 1) : : x(n � L + 1)

x(n� 1) x(n � 2) : : x(n� L)
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

x(n �N + 1) x(n� N) : : x(n� N + 1 � L + 1)

#
(4)

and
~Yn =

�
y(n) y(n� 1) : :y(n� L+ 1�N + 1)

�T
(5)

and ~H =
�
h(0) h(1) : : h(L� 1)

�T
(6)

We can find the transmitted data, x(n) by solving a joint maximum
likelihood problem on the data and the channel. The components
x(n); x(n � 1); ::::x(n � N + 1 � L + 1) completely specifies
the matrix Xn. The length of this vector is N + L � 1. There-
fore there are aN+L�1 possible data vectors, where a is the size of
the alphabet. By enumerating all these vectors and maximizing the
likelihood of the received vector over all these possibilities we can
find the best solution.

2.3. Subset Selection
The blind equalization problem as formulated above is an example
of subset selection problems. In these problems, one needs to iden-
tify a sparse representation of a given signal in terms of elements
of an over-complete set of vectors or signals. Such applications in-
clude signal coding, chemical analysis of compounds and direction
finding. Several algorithms for solving the subset selection prob-
lem have been proposed in the literature [3] [4][5]. But, as the prob-
lem is NP-complete [6], none of these methods always finds the
true global solution. Here we also assume some noise ( or model
inaccuracies ) to be added. Therefore the problem can be written
as�~�+noise = ~s: where� is the matrix whose column vectors
of length P are the over-complete dictionary elements, and ~� has a
small number of non-zero elements, n. A true global optimization
technique is to use brute force search to search through all linearly
independent subsets of a given size from the dictionary and decom-
pose the signal in each such basis. A numerical measure may be
applied to select the “optimality” criterion. This is an NP-complete
problem, with complexity increasing combinatorially with the size
of dictionary. If we enumerate all the possible solutions we will
have M = N!

(N�n)!n!
possible solutions, where N is the number of

vectors in�. If now we maximize the likelihood of getting ~s over
all these possible solutions we get a true optimal solution. But this
is computationally prohibitive, and hence we suggest applying the
progressive refinement algorithm to these M-ary hypotheses prob-
lem to get complexity logarithmic in M . Notice that these M hy-
potheses are n dimensional hyper-planes in P dimensional space,
and we are basically trying to find the most likely plane in which ~s
lies.

3. PROGRESSIVE REFINEMENT APPROACH TO
M-ARY HYPOTHESES TESTING

As explained in the Introduction, our progressive refinement deci-
sion approach relies on a binary decision tree. Specifically, we aim
to represent the optimal partitioning of the decision space using a
sequence of binary partitions. The sets defined by these binary par-
titions represent the nodes of the decision tree. Each node is associ-
ated to a subspace of the decision space and a subset of hypotheses
that cover all the subregions of that subspace. The subspace lies
entirely on one side of a binary partitioning of the subspace corre-
sponding to the parent of the node.

Ideally, we would like to reduce our uncertainty by a factor of
2 each time we perform a comparison. In other words, we would
hope to group the hypotheses in two large groups and subsequently
split these two sets in two recursively. Unfortunately, binary parti-
tions cannot always capture the exact boundary between two groups
of hypotheses. Therefore, we cannot group the hypotheses in dis-
joint groupings if we wish to achieve a detection performance close
to optimal. On the other hand, we want to minimize overlap be-
tween the groupings to minimize the number of comparisons re-
quired to make a decision. Hence, our problem then is one of ap-
proximating the partitions of the decision plane with the minimal
number of binary partitions, or equivalently of designing a tree of
minimal depth.

Our procedure is reminiscent of the tree vector quantizer de-
sign approaches. It consists of three steps
1. Hypotheses clustering or node splitting step: In this step we clus-
ter the hypotheses associated with a given node into 2 subgroups.
The clustering is based on distances between the signals or signal
planes associated to the hypotheses. Distances are measured using



the notion of principal angles [11]. Note that the signals or signal
spaces associated to a given hypothesis at a given node need not be
the ones associated to that hypothesis in the original problem. This
follows from the fact that the subspace of the decision space associ-
ated to the node may involve part of the decision region associated
to an interval. In that case, we need to associate a new centroid to
that part.
2. Selection of partitioning boundary and representative signal or
signal subspaces associated to clusters: This step is equivalent to
the centroid evaluation step in vector quantization. It yields the
subspace of the decision spaces associated to each child node. The
partitioning boundary is always a boundary between 2 subregions
linked to 2 hypotheses that appear in only one of the clusters.
3. Selection of the set of hypotheses associated with each child
node: Once we have settled on a given partitioning of the subspace
associated to the parent node, we need to decide on the exact set of
hypotheses that we will associate to the child node. In particular,
we must decide whether we would like to associate hypotheses cor-
responding to subareas of the decision space that were split by the
boundary selected in the previous step to one or both of the children
nodes. This decision is performed by using a rate-distortion like
framework [12]. (See [13] for details.) If these hypotheses are not
associated to a given node, the subareas of the decision space linked
to these hypotheses are divided optimally between the neighboring
subareas linked to other hypotheses. This increases the probability
of error but reduces the final complexity of the procedure. We keep
track of the increase in the probability of error and use this infor-
mation in the tree pruning step.
We are still working on an efficient implementation of the above
procedure. At this point we use a brute force approach to imple-
ment it. We have tested many variations of the above design pro-
cedure to reduce its complexity. (Note that its complexity is an off-
line problem.) These variations apply to special cases and involve
using non- overlapping subgroups of hypotheses. In the remainder
of this section, we describe three special cases that are applicable to
wireless communications problems. All three cases involve deter-
ministic signals observed in the presence of identically distributed
samples of a zero mean white Gaussian noise process. Case 1 deals
with known signals. Case 2 discusses known signals with unknown
scalar gains. Case 3 discusses the situation where the signals are
known to lie in given planes.

3.1. Case 1: Known signals
Assume that we receive vi + noise, 1 � i �M , where the noise
is white Gaussian noise. The optimal receiver is maxi r

T vi where
r is the received vector and vi is the ith possible transmitted vec-
tor. We assume that all vectors vi have equal norm. We want to di-
vide these M vectors into 2 groups and chose a representative for
each group. Assume these representatives are g1 and g2. To decide
which group is more likely we would compare rT g1 and rT g2. Or,
we can compare rT (g1� g2) to zero. Let g = g1� g2. Therefore,
we should select the g that solves

max
all N�dim vectors g

min abs(gTvi) (7)

and then divide the vectors into two groups: those that have posi-
tive correlation with gT and those with negative correlation.

A better solution would be to do the following.
1. Chose a vector g
2. Calculate all the values si = gT vi
3. Sort these values
4. Divide the vectors in two groups such as to maximize the

difference between the smallest A = si value in one group
and the largest B = si in the other group. Record the dis-
tance between the two groups

5. Chose another g and repeat the above procedure
6. Chose the g that gives the maximumA�B over all possible

g’s.
7. The test between the two hypotheses would then be to com-

pare rT g to A+ A+B
2

.
The above procedure can also be used if the vectors vi do not

have equal norms. In that case it does not perform as well as the
general procedure described above. However, as shown in Section
4, the resulting scheme has a performance that is still very close to
optimal.

3.2. Case 2: Known signals with unknown scalar gains
Assume the received signal is r = avi + noise, where a is an
unknown scalar factor that can be positive or negative. The opti-
mal receiver is maxi abs(r

T vi) We clearly cannot cluster the data
vectors using the suboptimal procedure described above. There are
two solutions to this problem. We can assume that we have a 2M
hypotheses problem where the 2M hypotheses are the original M
vectors and their negatives. Or we can cluster the vectors using the
following k-means algorithm

1. Divide the vectors into two groups in any way
2. Chose gl for group l such that gl that solves

max
all N�dim vectors

minabs(gTl vi)jvi 2 group l (8)

3. Calculate Ai = abs(gT1 vi) and Bi = abs(gT2 vi) for all the
vectors vi, and place vector vi with g1 if Ai > Bi and with
g2 otherwise

4. Repeat the above procedure till there is no more change

3.3. Case 3: Planes
For simplicity let us consider 2-dimensional planes only. There are
M planes, and the received signal is a point in one of these planes
added to noise. Formally, if vectors vi1 and vi2 span plane i, then

we receive:r =
�

~vi1 ~vi2
�T

� h + noise where h is an un-
known vector of length 2, and the noise is white Gaussian noise.
The optimal receiver for such a setting is to project r on each of the
possible planes and chose the plane that has the largest projection.
Notice that in the case of 2 dimensional planes in 3 dimensional
space, any two such planes must meet in a line. Any point lying on
the intersection of any two planes causes ambiguity in the process
of identifying in which plane the signal lies. Also points close to
that intersection might cause that ambiguity since we have additive
noise.

This problem can be solved using the general approach described
at the beginning of this section. Here we present an alternative sim-
pler solution. We will chose a plane as a representative of each
group of planes. We divide the planes into two groups such that the
projection of the matrix representing plane i should have larger pro-
jection on the representative of its group. Chose the representative
planes so as to maximize the minimum difference between the pro-
jection of the matrices representing the planes on the two represen-
tatives. Notice that this is reasonable since we are really scanning
the planes through multiplying those matrices by a vector. Let’s as-
sume that we know the distribution of the elements of the vector h.
LetAl be the norm of the projection of the received vector r onGl,
the representative planes for the two groups. If A1 � A2 is larger
than a certain threshold we would assume that the transmitted plane
is one in group 1, while if A1�A2 is smaller than a certain thresh-
old, we would assume that the transmitted plane is one in group 2.
If A1�A2 is a value in between these two threshold we would use
the optimal detector instead of our progressive refinement scheme.
These thresholds are obtained through our assumed knowledge of
the distribution of the elements of h.



4. SIMULATION RESULTS

Fig. 1 shows results of cases 1 and 2. Fig. 1(a) compares the prob-
ability of error, at various noise standard deviations, of applying
the algorithm discussed in 3.1 on 16 unit norm vectors to the op-
timal probability of error. Fig. 1(b) is for 16 vectors generated by
enumerating all the possible bit sequences of a 4-user CDMA set-
ting. Each user is given a random 3-point signature. Fig. 1(c) is
for case 2 applied on 8 vectors. In all these cases the vectors were
divided into 2 equal groups of 8 vectors each, and so on, so that
the final complexity is proportional to log216 instead of to 16. It
is clear that our algorithm performs very close to the optimal while
providing a large reduction in complexity. Fig. 2 shows results for
case 3. Here h elements are assumed to be uniformly distributed
between -1 and 1. Fig. 2(a) shows the trade off between complex-
ity and performance. We have 4 2 dimensional planes in 4 dimen-
sional space. We cluster the planes into 2 clusters, with planes 2
and 3 in cluster 1 and plane 4 in cluster 2. Plane 1 is placed in either
cluster 2 only or in both clusters. This needs on average 2 and 2.5
operations respectively to arrive at a solution. In both cases plane
3 was a representative of cluster 1 and plane 4 was a representa-
tive of cluster 2. In this simple example the tradeoff was only ap-
plied in the first step of clustering, as in the second step, we were
able to optimally divide both clusters into two disjoint subclusters.
When M is larger, this probably won’t be the case. Fig. 2(b) is the
probability of error for the above example when we use 2.5 oper-
ations vs noise standard deviation. Fig. 2(c) is obtained using the
simple algorithm in 3.3 applied on 4 2 dimensional planes in 4 di-
mensional space. The optimal algorithm was used only for about
.6-.8% of the time, i.e. when A1�A2 is in between the thresholds
used. Fig. 2(d) is an example of blind equalization were the chan-
nel is assumed to be a 2-tap filter, and the transmitter is assumed to
send binary bits. We apply the simple algorithm in 3.3 to a case of
4 two dimensional planes in 3 dimensional space. Here, we found
that the optimal detector was applied around 60% of the time, but
this might be expected as all the 2 dimensional subspaces in a 3 di-
mensional space must intersect. This percentage will be lower if
we looked at longer sequences as in the case of Fig. 2(c). We can
see from all these figures the probability of error of our proposed
progressive refinement technique is very close to the optimal prob-
ability of error.

5. CONCLUSION

In this paper, we have presented a progressive refinement approach
to the problem of M-hypotheses detection. We have illustrated its
use in problems that arise in CDMA and blind equalization. We
are currently working on an efficient implementation of the search
procedure, and on designing signatures for CDMA for increasing
its capacity.
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Figure 1: (a)Error for 16 unit norm vectors-(b)Error for 4 users
with a 3-point signature-(c)Error for 8 vectors multiplied by an un-
known scalar
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Figure 2: (a)Complexity trade off-(b)(c)Error for 4 2-dimensional
planes in 4-dimensional space-(d) A blind equalization example


