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ABSTRACT

In this paper, we study the issue of regularity for multi-
wavelets. We generalize here the concept of balancing for
higher degree discrete-time polynomial signals and link it
to a very natural factorization of the lowpass re�nement
mask that is the counterpart of the well-known zeros at �
condition for wavelets. This enables us to clarify the sub-
tle relations between approximation power, smoothness and
balancing order. Using these new results, we are also able
to construct a family of orthogonal multiwavelets with sym-
metries and compact support that is indexed by the order
of balancing. More details (�lters coe�cients, drawings of
the whole family, frequency responses,...) can be obtained
on the [WEB] at http://lcavwww.epfl.ch/~lebrun

1. INTRODUCTION

In the usual framework of wavelets, the two concepts of re-
production of continuous-time polynomials (approximation
theory issue) and preservation/cancelation of discrete-time
polynomial signals (subband coding and compression issue)
are highly correlated since they have been proved to be
equivalent to the same condition on the number of zeros at
� in the factorization of the lowpass �lter. The situation is
di�erent for multiwavelets. In [7, 8], interested in the sub-
band coding issue in general and the problem of processing
one dimensional signals with multiwavelets in particular, we
introduced the concept of balanced multiwavelets that has
since inspired many other papers [6, 11, 12]. The aim of
this concept was to avoid the arti�cial step of pre�ltering
in multiwavelet based systems. Here, we will prove that
the notion of balancing order is in fact central to the whole
issue of regularity for multiwavelets.

2. MULTIWAVELETS

Generalizing the wavelet case, one can allow a multires-
olution analysis fVngn2Zof L2(R) to be generated by a
�nite number of scaling functions �0(t); �1(t); : : : ; �r�1(t)
and their integer translates. Then, the multiscaling func-
tion �(t) := [�0(t); : : : ; �r�1(t)]

> veri�es a 2-scale equation

�(t) =
X
k

M[k]�(2t� k) (1)
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Figure 1: Orthogonal multi�lter bank for r = 2.

where now fM[k]gk is a sequence of r � r matrices of real
coe�cients. The multiresolution analysis structure gives
V1 = V0 � W0 where W0 is the orthogonal complement
of V0 in V1. We can construct an orthonormal basis of
W0 generated by  0(t);  1(t); : : : ;  r�1(t) and their integer

translates with  (t) := [ 0(t); : : : ;  r�1(t)]
> derived by

 (t) :=
X
k

N[k]�(2t� k) (2)

where fN[k]gk is a sequence of r � r matrices of real co-
e�cients obtained by completion of fM[k]gk . Introducing
the re�nement masksM(z) := 1

2

P
nM[n]z�n and N(z) :=

1
2

P
nN[n]z�n, the equations (1) and (2) translate in Fourier

domain into

�(2!) =M(ej!)�(!) and 	(2!) = N(ej!)�(!) (3)

We can then derive the behavior of the multiscaling function
by iterating the �rst product above. If this iterated matrix
product converges, we get in the limit

�(!) =M1(!)�(0) =
1Y
i=1

M(e
j !
2i ) �(0) (4)

For simplicity and without loss of generality, we will now on
concentrate on the case r = 2. Furthermore, we will assume
that the sequences fM[k]gk and fN[k]gk are �nite and thus
that �(t) and  (t) have compact support. We then recall
some result obtained in [1] about the convergence of the
iterated matrix product M1(!). For M(z) satisfying a
matrix Smith-Barnwell orthogonality condition

M(z)M>(z�1) +M(�z)M>(�z�1) = I (5)

a necessary condition for uniform convergence of the iter-
ated product to a scaling matrixM1(!) such that M1(0)
is non-zero and bounded is either

(i) M(1) = I, M(�1) = 0 (note that M1(!) has rank 2)

(ii) M(1) has eigenvalue �0(1) = 1 and j�1(1)j < 1, M(�1)
has rank 1 and satis�es r0M(�1) = 0 where r0 is a left
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Figure 2: Multi�lter bank seen as a time-varying �lter bank.

eigenvector ofM(1) for the eigenvalue 1 (note thatM1(!)
has then rank 1).

Now, assuming (5) and (i) or (ii), the scaling functions and
their integer translates form an orthonormal basis of V0.
Thus, for s(t) 2 V0, we have

s(t) =
X
n

s
>
0 [n]�(t� n) (6)

then from V0 = V�1 �W�1, we get

s(t) =
X
n

s
>
�1[n]�(

t

2
� n) + d

>
�1[n] (

t

2
� n) (7)

and we have the well known relations between the coe�-
cients at the analysis step

s�1[n] =
X
k

M[k � 2n]s0[k] (8)

d�1[n] =
X
k

N[k � 2n]s0[k] (9)

and for the synthesis, we get

s0[n] =
X
k

M
>[n� 2k]s�1[k] +N

>[n� 2k]d�1[k] (10)

These relations enable us to construct a multi-input multi-
output �lter bank (abbr. multi�lter bank) as seen in Fig. 1.
In case of a one-dimensional signal, it then requires vec-
torization of this input signal to produce an input signal
which is 2-dimensional. A simple way to do that is to split
a one-dimensional signal into its polyphase components. In-
troducing �

m0(z)
m1(z)

�
:=M(z2)

�
1
z�1

�
(11)

and in the same way n0(z) and n1(z), the system can then
be seen as a 4 channel time-varying �lter bank (Fig. 2).

3. HIGH ORDER BALANCING

In [7, 8], we showed that if the componentsm0(z) andm1(z)
of the lowpass branch have di�erent spectral behavior, e.g.
lowpass behavior for one, highpass for the other, it then
leads to unbalanced channels that mix the coarse resolution
and details coe�cients and create strong oscillations. One
expect then some class of smooth signals to be preserved
by the lowpass branch and cancelled by the highpass.

3.1. Balancing

We de�ne the band-Toeplitz matrix corresponding to the
lowpass analysis

L :=

2
64
:::
M[0] M[1] M[2] M[3] :::

M[0] M[1] M[2] M[3] :::
M[0] M[1] M[2] M[3] :::

:::

3
75 (12)

and in the same way, we de�ne H the band-Toeplitz ma-
trix corresponding to the highpass analysis. So, we want
u1 := [: : : ; 1; 1; 1; 1; : : : ]> to be an eigensignal of the low-
pass branch, hence we introduce

De�nition 3.1 An orthonormal multiwavelet system is said
to be balanced i� the lowpass synthesis operator L> preserve
[: : : ; 1; 1; 1; 1; : : : ]> i.e. L>u1 = u1.

By the orthonormality relations

[ L> H> ] [ LH ] = I and [ LH ] [ L> H> ] = I

we get L>L+H>H = I;LL> = I;LH> = 0 andHH> = I.
Then L>u1 = u1 implies Lu1 = u1 and so Hu1 = 0 i.e. u1
is cancelled by the highpass branch. Now, we can state

Theorem 3.1 The following conditions are equivalent

B0: L>u1 = u1.

B1: [1; 1] is a left eigenvector of M(1) for �0(1) = 1.

B2: �(0) = [1; 1]>.

B3:y m0(z)+m1(z) has zeros on the unit circle at j;�1;�j.

B4: One can factorize M(z) = 1
2
T(z2)M0(z)T

�1(z) with

T(z) :=

�
1 �1

�z�1 1

�
and M0(1)

�
1
1

�
=

�
1
1

�

Proof. The equivalences [B0)B1)B2)B3)B0] were
proved in [8], and [B1)B4] is a direct consequence of The-
orem 4.1 in [9]. Assuming B4, we get

m0(z) +m1(z) =
�
1 1

�
M(z2)

�
1
z�1

�

=
1

2

�
1 1

� � 1 �1
�z�4 1

�
M0(z

2)
1

1� z�2

�
1 1
z�2 1

� �
1
z�1

�

=
1

2

�
1� z�4

1� z�1

��
1 0

�
M0(z

2)

�
1
z�1

�

and this is condition B3. �



3.2. High Order Balancing

De�nition 3.2 An orthonormal multiwavelet system is said
to be balanced of order p i� the signals

un := [: : : ; (�2)n; (�1)n; 0n; 1n; 2n; : : : ]>

with n = 0; : : : ; p� 1 are preserved by the operator L> i.e.

L
>
un = 2�nun for n = 0; : : : ; p� 1

Similarly to the previous case, L>un = 2�nun implies
Lun = 2nun and Hun = 0 for n = 0; : : : ; p � 1. The
polynomial structure of the signal is captured up to degree
p� 1 by the lowpass branch coe�cients. We then get

Theorem 3.2 The following conditions are equivalent

B0p: L
>un = 2�nun for n = 0; : : : ; p� 1.

B3yp: De�ning �(n)(z) := u
(n)
1 (z)=u

(n)
0 (z) where u

(n)
0 (z)

and u
(n)
1 (z) are the formal series u

(n)
i (z) :=

P
k2Z(2k+

i)nz�k, we impose m0(z)+�
(p)(z4)m1(z) to have ze-

ros of order p at j;�1;�j.

B4p: M(z) can be factorized as

M(z) =
1

2p
T
p(z2)Mp�1(z)T

�p(z) (13)

with Mp�1(1)

�
1
1

�
=

�
1
1

�
and T(z) de�ned as before.

Proof.

[B0p)B4p]: M(z) satis�es the conditions of Theorem 2.1
in [10] with y>n := [0n; 2�n] for n = 0; : : : ; p � 1. Then,
applying Corollary 4.3. from [10], we get the factorization

M(z) =
1

2p
C0(z

2) : : :Cp�1(z
2)Mp�1(z)C

�1
p�1(z) : : :C

�1
0 (z)

with Cn(z) :=

�
a�1n �a�1n

�z�1b�1n b�1n

�
and the FIR re�nement

maskMp�1(z) verifying Mp�1(1)rp�1 = rp�1 where r
>
n :=

[an; bn] = 2�n[1; 1] obtained recursively from yn for n =
0; : : : ; p� 1. Thus Cn(z) = 2nT(z) and Mp�1(1)[1; 1]

> =
[1; 1]>.
[B4p)B3p]: This is proved by induction on p [WEB]. Here,
we will only verify the result for p = 1; 2; 3. The case p = 1
is a consequence of Theorem 3.1. For p = 2, we have

2(m0(z) + �(2)(z4)m1(z)) = 2m0(z) + (3� z�4)m1(z)

=
�
2 3 � z�4

�
M(z2)

�
1
z�1

�

=
1

4

�
1� z�4

1� z�1

�2 �
2 �1

�
M1(z

2)

�
1
z�1

�

For p = 3

8(m0(z) + �(3)(z4)m1(z))

= 8m0(z) + (15 � 10z�4 + 3z�8)m1(z)

=
1

8

�
1� z�4

1� z�1

�3 �
8 + 3z�4 �9

�
M2(z

2)

�
1
z�1

�

y Conditions B3 and B3p were �rst given by Selesnick in [12].
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Figure 3: Order 2 balanced orthogonal multiwavelet: the
scaling functions are 
ipped around 2, the wavelets are sym-
metric/antisymmetric, the length is 5 taps (2x2).

Hence the result for p = 1; 2; 3.
[B3p)B0p]: As mentioned in [12], condition B3p says that
the multirate system

�(" 4)� m0(z) + �(p)(z4)m1(z) �

has zeros of order p at the roots of the unity j;�1; j. So,
from the rank M wavelets theory (Theorem 2.1. in [4]), we
get that this system preserves discrete polynomial sequences
of degree n = 0; : : : ; p�1, and since this multirate system is
equivalent to the lowpass synthesis branch for polynomial
sequences of degree up to p � 1, this translates in time
domain into condition B0p. �

4. REGULARITY

Now, one may wonder how these new results relate to the
classical notions of regularity: approximation power and
smoothness.

4.1. Approximation Power and Balancing Order

One says that �(t) has approximation power m if one can
exactly decompose polynomials 1; t; t2; : : : ; tm�1 using only
�0; �1 and their integer translates, i.e. for n = 0; : : : ; p� 1,
we have tn =

P
k x

>
n [k]�(t� k). Then, assuming that �(t)

is balanced of order p, we get that M(z) factorizes as in
(13), so applying p times Theorem 2.6. from [10], we get
that �(t) has at least an approximation power of p.

Proposition 4.1 If an orthonormal multiwavelet system is
balanced of order p, then the associated multiscaling func-
tion �(t) has an approximation power of at least p.

We can notice that the reciprocity is false: the DGHM [2]
multiscaling function has an approximation power of 2 but
is not even balanced [8].

4.2. Smoothness and Balancing Order

From the previous proposition, and some results from [10]
(Corollary 2.10.) showing links between the approxima-
tion power and the smoothness of the multiscaling function
(number of continuous derivatives or Sobolev exponent s i.e.R
k�(!)k2(1 + j!j2)

s
d! <1), we get the following result
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Figure 4: Order 3 balanced orthogonal multiwavelet: the
scaling functions are 
ipped around 3, the wavelets are
symmetric/antisymmetric, the length is 7 taps (2x2) and
an estimate of the smoothness using Proposition 4.2 gives
the Sobolev exponent s = 1.71.

Proposition 4.2 If an orthonormal multiwavelet system
has balancing order p and the spectral radius of Mp�1(z) in
the factorization (13) veri�es �(Mp�1(1)) < 2, then de�n-
ing


k :=
1

k
log2 �(Mp�1(e

�j!k�1) : : :Mp�1(e
�j!0)) (14)

with f!0; : : : ; !k�1g invariant cycles of ! 7! 2! (mod 2�),
and 
 := infk 
k, we get that �(t) is at most b p � 
 � 1

2
c

times continuously di�erentiable (and has at most Sobolev
exponent s = p� 
).

Idea of proof. To characterize the smoothness, we are
interested in the decay as N ! 1 of �(2kN!0) for !0 2
[0; 2�]. From the convergence (4), we form the truncated

productsMN(!) :=
QN

i=1M(e�j!=2
i

), then evaluating these
on the invariant cycle f!0; : : : ; !k�1g, we get

MkN (2
kN!0) =

kNY
i=1

M(e�j2
�i2kN!0)

=
�
M(e�j!k�1) : : :M(e�j!0)

�N (15)

then we study the asymptotic behavior of this product by
looking at the eigenvalues of M(e�j!k�1) : : :M(e�j!0 ) =

Uk�kU
>
k , where �k = diag(�

(k)
0 ; �

(k)
1 ). Then if �(�k) =

maxfj�
(k)
0 j; j�

(k)
1 jg � 2�ki then the scaling functions can-

not have Sobolev exponent of more than i and so cannot
be more than bi � 1=2c times continuously di�erentiable.
Applying this to the factorization (13), we get the upper-
bounds on smoothness. �

Using results from the Perron-Frobenius theory [5], one can
also �nd lower-bounds and prove that s = p � 
 is a good
estimate of the Sobolev exponents of �(t) and  (t) [WEB].
For example in the case of the Haar multiwavelet, with
!0 = 2�=3, �0 = 0; �1 =

1
4
, it then proves that the scaling

functions cannot be continuous. In the case of the DGHM
multiwavelet, �0 =

1
100

; �1 =
1
42
, it proves that the scaling

functions can be at most C1. They are in fact Lipschitz.

5. CONSTRUCTION OF HIGH ORDER

BALANCED MULTIWAVELETS

Using the results above, we are now able to construct a
Daubechies like family of multiwavelets. Namely, by impos-

ing the number of T(z2) : : :T�1(z) in the factorization (13),
we force the order of balancing. Then, we design Mp�1(z)
by imposing conditions of orthonormality (5) onM(z), 
ip-
ping property on m0(z);m1(z) (i.e. m1(z) = z�2L+1m0(z))
and linear phase on n0(z) and n1(z). Using a Gr�obner
bases approach and the program Singular [3], we have been
able to construct all the multiwavelets of compact sup-
port � [0; 6] with 
ipped scaling functions and symmet-
ric/antisymmetric wavelets for order 2 and 3 of balancing
[WEB]. Fig. 3 and Fig. 4 show some examples of high order
balanced multiwavelets with these properties.

6. CONCLUSION

By introducing the concept of high order balancing, we have
clari�ed the issue of general design of multiwavelets. We
have proved that this concept was equivalent to a natural
counterpart of the zeros at � condition. With these re-
sults, we made it possible to design general families of high
order balanced multiwavelets with the required properties
for practical signal processing (preservation/cancelation of
discrete-time polynomial signals in the lowpass/highpass
subbands, FIR, linear phase and orthogonality). Multi-
wavelets are eventually asserting themselves as convincing
alternative tools for digital signal processing.
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