AN IMPLEMENTATION OF
A PARALLEL RAY TRACING ALGORITHM
ON HYBRID PARALLEL ARCHITECTURE

Chang-Geun Kwon, Hyo-Kyung Sung, and Heung-Moon Choi

The School of Electronics and Electrical Engineering,

Kyungpook National University, Taegu 702-701, Korea

pdp@ee.kyungpook.ac.kr

ABSTRACT

In this paper, we present a paralld ray tracing algorithm on
hybrid parallel architecture with processor farm model to speed
up the ray tracing. Hybrid parallel architecture, a hybrid of a
tightly— and a loosely<oupled one, is used in which
reconfiguration for local and virtual shared memory is made
through a crossbar network with local and global bus The
proposed architecture enhances the overall performance of the
parallel ray tracing by reducing the data communication time
between the processors in dynamic load balancing while
maintaining data coherency. ‘The proposed algorithm is
implemented on TMS320C80, an MVP (multimedia video
processor), which has one master processor and four save
processors. The experimental results show that the proposed
algorithm gives almost a linear speedup for parallel ray tracing

of a complex image.

1. INTRODUCTION

Ray tracing is widely recognized as a powerful, effective
technique for generating redlistic 3D images in such fields as
animations, movies, entertainments, and advertisements due to
its simplicity of implementation and can modeling of a variety of
visual phenomena such as specular reflection, transparency, and
shadows. However, despite of the continuous improvements in
reduction of the computation complexity required to generate an
image, the ray tracing agorithm remains as a highly time
consuning task[1] Recent researches[2-9] to solve this problem
involve the application of paralle processing by having a
number of processing elements working on the same problem
simultaneoudy. The independence of the computation for rays,
traced through an environment in image generation, makes the
ray tracing algorithm an obvious candidate for paralle

processing.

The division of a computation among the processors in a
multiprocessor system can be broadly categorized according to
the nature of parallelism that they exploit. Dataeriented (with
ray dataflow) pardlel implementation[3] based on message
passing partitions the object space to each processor so that ray
messages are communicated between processors as they traverse
the 3D space. In this case, the model database can be dividedin a
straightforward way between processors, but balanced
distribution of the load between processors is difficult because
the relationship between the computation and data are unknown
prior to execution. On the other hand, pixel -oriented (without ray
dataflow) parallel implementation[4-7] partitions image space to
each processor. A sequential process running in each processor
isin charge of the computing of a subset of pixels determined
according to the processor sload In this case, load balancing
can be achieved eadily by using both the static and dynamic
technique, but an efficient division of the database between the
processors while maintaining data coherency is difficult to
determine.

In this paper, we present a pixel oriented paralld ray tracing
algorithm on hybrid parallel architecture with processor farm
model to speed up the ray tracing. Hybrid parallel architecture is
used in which reconfiguration for local and virtual shared
memory is made through a crossbar network with local global
bus. Although the database is divided into local memory of each
processor, tightlyeoupled architecture can maintain data
coherency while sharing the database of other processors
Besides, the architecture reduces interprocessor communication
by using a virtual shared memory of tightly-coupled architecture
through a crossbar network. The proposed algorithm is
implemented on TMS320C80 which has one master processor
and four dave processors. Speedup, efficiency, and scalability of
the proposed parallel architecture are examined.

2. PARALLEL RAY TRACING ON
PARALLEL ARCHITECTURE

2.1. Parallel Ray Tracing Algorithm

Ray Tracing algorithm is intrinsically parallel because rays,
shot from the viewpoint through each pixel in Figure 1, are
calculated independently. Parallel ray tracing algorithm in a
multiprocessor system can be broadly categorized according to
the nature of parallelism that they explait.

Data-eriented pardlld implementation partitions database into
subdomains, each associated with a processor, and assign the
computation to the processor that owns the data involved in the
computation. If a computation requires other data not located at
the processor, the processor sends it to the relevant processors by
messages. In this case, balanced distribution of the load between
processorsis difficult.

On the other hand, pixel-oriented pardlel implementation
partitions image space to each processor. A sequential process
running in each processor is in charge of the computing of a
subset of pixels determined according to the processor sload. In
this case, load balancing can be achieved easily by using both
the static and dynamic techniques, but an efficient division of the
database between the processors while maintaining data
coherency is difficult to determine.

Data coherency implies that rays traced through adjacent
pixels will traverse similar regions of space, and give rise to
references to smilar subset of object database. When a partition
of object database is performed, maintaining of data coherency
should be considered.

~\~ Light
source

Secondary
ray

Normal
vector

Primary
“n g

This ray doesn't
intersect any object.

Figure 1. Trgjectory of ray tracing.

2.2. Parallel Architecture for Parallel Ray Tracing

The simplest way to implement parallel ray tracing is to
duplicate the entire object database in the local memory of each
processor. However, this method is wasteful and the limited size
of each processor slocal memory prohibits its use for rendering
complex scenes. An alternative approach is to emulate a shared
memory. Green and Paddon[6] used a virtual memory to store
the database and a cache mechanism to reduce communication
with other processor to maintain data coherency. Green and
Paddon located the virtual memory in the host. This can increase
the communication cost between host and nodes, and reduce
efficiency.

Figure 2 shows a hybrid parallel architecture. L presents local
port for accessing its own local memory and G presents global
port for accessing local memory of other processors.

Wﬁﬁ

- o N RSN 1 IURRSRURR N SR
PE, :
G]
: I
PE,
G]
. .
[} * N
. .
. .
L :
PE :
G T
s} [} O :
Crossbar network

Figure. 2. Hybrid parallel architecture.

In the hybrid parallel architecture, each processor has its
dedicated local memory, so it has characteristics of the loosely—
coupled architecture. But they also can access other processor s
local memory through the reconfigurable crossbar network, so
they have the characteristics of both of the loosely—and tightly—
coupled architectures concurrently. So, by implementing the ray
tracing algorithm on the hybrid paralle architecture, data
coherency can be maintained while the database of other
processors can be shared. Besides, the architecture reduces
interprocessor communication overhead by using a virtual shared
memory of tightlyeoupled architecture through a crosshar
network.

3. PARALLEL RAY TRACING ON HYBRID
PARALLEL ARCHITECTURE

Hybrid paralld architecture with processor farm model is
shown in Figure 3. A root processor check the status of each
node whether it is busy or idle, then dynamically allocates load
toidle nodes and collects results from finished nodes

Each node performs two processes. One is work process (WP)
and the other is database manager (DM). The WP performs ray
tracing computation and is said to be in one of the two states,
busy or idle. The DM services database references of WP during
the course of ray tracing and minimize the average access time to
object database by each node in looselyeoupled architecture. As
DM allows each node reference object data in its own local
memory as well as local memory of other nodes through a
crossbar network, and therefore reduces the data communication
time between the processors in dynamic load balancing while
maintaining data coherency.

Each node has two command buffers, used in pingpong
fashion. These enable nodes to immediatel y perform the next job
in the other command buffer instead of waiting for the job

allocated by root processor.

Host @ <> Display

Task Crossbar Data Result
Network base
[] [] []

Node 0 Node 1 Node n

Figure. 3. Overall system architecture.

4. SIMULATION RESULTS

The proposed parallel ray tracing algorithm is implemented on
Griffin DSP board with a TMS320C80 and 8Mbytes of RAM.
The TMS320C80 contains five processors: a master processor
(MP) and four parald processors (PP). The MP manages
processors and has floatingpoint unit. Each PP is a DSP with a
fixedpoint processing unit. Each of the five processors has its
own 10Kbytes local memory and can access other processor s

local memory in pardllel over a crossbar switching network[9].

(© ()

Figure 4. Ray traced images for the experiment (a) single sphere,
(b) spheres, (c) tetra, and (d) wealth.

Thus TMS320C80 is compatible with the implementation of a
hybrid pardllel architecture. Experiments are conducted on four
models and the results of the ray tracing are listed in Figure 4.
All ray traced images are 1027x768 in resol ution.

Table 1 shows parallel ray tracing time for each image with
different number of nodes. Figure 5 shows the number of nodes
and the speedup for each image. These experimental results

show that the proposed al gorithm gives almost a linear speedup

Table 1. Ray tracing time and speedup for each image with
different number of nodes.

[Unit: sec]
Proce- TMS320C80
ssor Numbers of Nodes Efficiency
Images .) 3 4 (4 nodes)
206 112 82 68
S-sphere 75.7%
(1 (1.89) | @351 | 3.03)
665 346 237 189
Spheres 87.9%
(1 (192) | @81 | 3.52)
963 492 331 251
Tetra 95.9%
(1 (196) | @91 | (3.89)
1432 723 486 368
Wealth 97.2%
(N (1.98) | 9% | (3.89)
() Speedup

Number of processors

+: Single sphere Q : Spheres

w1 Tetra At Wealth

Figure. 5. Speedup for each image.

proportional to the number of nodes in pardlel ray tracing of
complex images. Single sphere image shows poor speedup
because it is so dmple an image that the ratio of the
interprocessor communication to actual ray tracing computation
is the highest among the four images.

To see the effect of the granularity (grain size) to the
performance, the grain size is varied from 16 pixels to 16383
pixels in 4node system. Table 2 shows the results For small
grain sze , it is difficult to maintain data coherency and the
frequent interprocessor communication is the cause of the
overhead. As the grain size increases, maintaining the data
coherency becomes eader but the load baancing becomes
difficult. If the grain size is one pixel, then we can obtain the
best load balance, but the minimal grain size highly increases the

communication overhead, leading to worst performance.

Table 2. Ray tracing time for each image with different grain

size.
[Unit: sec]
Grain Size
ixels) 16 64 256 1024 | 4096 | 16384
Images

S-sphere 96 75 70 68 71 75

Spheres 220 198 193 189 199 212

Tetra 263 252 250 251 273 290

Wealth 379 371 369 368 395 413

5. CONCLUSION

A pardlel ray tracing agorithm is implemented on hybrid
parallel architecture with processor farm model to speed up the
ray tracing. In the hybrid parallel architecture, each processor
can access its own local memory as well as local memory of
other processors through a crossbar network, and therefore data
coherency can be maintained while the database of other
processors can efficiently be shared. Besides, the proposed
algorithm reduces interprocessor communication by using a
virtual shared memory of tightly-coupled architecture through a
crossbar network. The experimental results show that the
proposed architecture can speed up the ray tracing by 3.89 with
four processing elements within the MVP.

REFERENCES

[1] R. A. Hall and D. P. Greenberg, "A testbed for redlistic
image synthesis," IEEE CG&A, Vdl. 3, No. 8, pp. 10-20,
Nov. 1983.

[2] S. Gaudet, R. Hobson, P. Chilka, and T. Calvert,
"Multiprocessor experiment for high-speed ray tracing,”
ACM Transactions on Graphics, Vol. 7, No. 3, pp. 151179,
July 1988.

[3] P. Pitot, "The voxar project,” IEEE CG&A, Vdl. 13, No. 1,
pp. 2733, Jan. 1993.

[4] D. Badouel, K. Bouatouch, and T. Priol, "Distributing data
and contrdl for ray tracing in paralldl," IEEE CG&A, Vdl. 14,
No. 4, pp. 6976, July 1994.

[5] S. Horiguchi, A. Katahira, and T. Nakada, "Paralld
processing of incremental ray tracing on a multiprocessor
workstation," Proceedings of the International Conference
on Parallel Processing, pp. 192196, 1991.

[6] S. A. Green and D. J. Paddon, "Explaiting coherence for
multiprocessor ray tracing,”" IEEE CG&A, Vdl. 9, No. 6, pp.
12-26, Nov. 1989.

[7] S. Whitman and P. Sadayapan, "Computer graphics
rendering on a shared memory multiprocessor,” Proceedings

of the International Conference on Parallel Processing, pD.
197-200, 1991.

[8] S. Green, Parallel Processing for Computer Graphics,
London: Pitman, 1991.

[9] TALS320C80 User's Guide, Texas Instruments, 1995.

