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ABSTRACT
In this paper we study model parameter compensation methods
for noise-robust speech recognition based on CDHMM. First, we
propose a modified PMC method where adjustment term in the
model parameter adaptation is varied depending on mixture
components of HMM to obtain more reliable modeling. A state-
dependent association factor that controls the average parameter
variability of Gaussian mixtures and the variability of the
respective mixtures is used to find the final optimum model
parameters. Second, we propose a re-estimation solution of
environmental variables with additive noise and spectral tilt
based on expectation-maximization (EM) algorithm in the
cepstral domain. The approach is based on the vector Taylor
series (VTS) approximation. In our experiments on a speaker
independent isolated Korean word recognition, the modified
PMC show better performance than the Gales’ PMC and the
proposed VTS is superior to both of them.

1. INTRODUCTION

HMM-based speech recognition systems have been widely used
to reduce recognition error rates in adverse environments. A
model parameter compensation method is one of the noise-robust
speech recognition methods. This method reduces many
computational complexities while feature vector transformation
or noise robust auditory modeling methods have computational
loads in retraining the recognizer. Also, we can perform model
parameter compensation by using only the testing words, even in
case that no stereo databases exist. In addition, model parameter
compensation methods have been fast developed in various
approaches.

In this paper we use only mean vectors of the Gaussian mixtures,
and the mean vectors are compensated by estimating noise mean
vectors state by state. The method of adjusting only mean
vectors has an advantage in reducing computational times and
prevents us from using incorrect noise covariance estimated
from 3 or 4 frames of noise.

This paper is organized as follows. In section 2, we discuss the
proposed model parameter compensation algorithms, so called
EM-driven and steepest-descent-driven PMC with an association
factor and mean-VTS0. EM-driven PMC and steepest-descent-
driven PMC adapt clean speech mean vectors to noisy speech
with an association factor calculated by the EM and the steepest
descent algorithm, respectively. Mean-VTS0 compensates clean
speech mean vectors by using spectral tilt vectors as well as
noise mean vectors estimated by the 0th order vector Taylor
series approximation. In section 3, we discuss our experimental

results on speaker-independent Korean isolated word
recognition corrupted by additive white Gaussian noise and
driving car noise. Finally, we summarize our outcomes and
discuss our future work.

2. PROPOSED MODEL COMPENSATION
ALGORITHMS

2.1. EM-driven PMC and steepest-descent-
driven PMC with an association factor

In this sub-section we discuss two new methods of model
compensation that have high recognition accuracy in low SNR.
These algorithms are based on PMC, but are very simple. The
algorithms use noise and clean speech model parameters, and
noise model parameters are estimated from 3 or 4 frames at the
beginning of noisy speech. The PMC method proposed by Gales
and Young[1][2] uniformly compensates all clean speech model
parameters such as mean and covariance of the Gaussian
mixtures with estimated noise model parameters. In spite of the
fact that a recognizer based on HMM estimates model parameters
in every state, the PMC method proposed by Gales and Young
adjusts those without considering individual information, such as
the different effect of the uniform compensation between states,
mixtures in a state. In this paper, we propose new model
parameter compensation algorithms that are based on the PMC.
They are called respectively EM-driven and steepest-descent-
driven PMC with an association factor. Assumptions for the new
algorithms are as follows.

• Variation characteristic of model parameters is similar in
a state, but is different between states.

• Covariance of Gaussian mixtures is invariable. So a
covariance matrix of a noisy speech is equal to that of
the clean speech.

• All of the mean vectors of the Gaussian mixtures are
adapted state by state.

The above assumptions are expressed as follows within a state.
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where iµ̂  and iµ  are separately a mean vector compensated by

the Gales’ PMC and a mean vector of clean speech in i-th
Gaussian mixture. The vector i1b  is an amount of difference of a

mean vector of i-th Gaussian mixture. The constant M is a



number of Gaussian mixtures in a state, and the vector 2b

expresses an average variation of mean vectors in a state.

We can evaluate a vector b  called the bias vector in each state
that is used for compensating differences of mean vectors
between clean speech and noisy speech. Then, the bias vector b
is

21)1( bbb λ+λ−= i (2)

where the unknown constant λ  weights between the vector i1b

and 2b  in a state for deciding the bias vector b . λ  is called

an association factor and to evaluate the bias vector eventually,
we must find the association factor λ . There are many
methodologies for finding the association factor λ , but we use
an EM algorithm and a steepest-descent method that are
evaluated by one iteration.

2.1.1. The case of an EM algorithm

We will describe the process of finding the association factor λ
in the cepstral domain. The procedure of the EM-driven PMC
with an association factor is as follows.

÷ Initialize the association factor. In this paper, the association
factor is determined experimentally as 0.2.

ø Perform initial PMC for input noisy speech. The PMC
compensates both mean vectors and covariance matrices of
clean speech Gaussian mixtures.

ù Prerecognition : The compensated model parameters are
used for preliminary speech recognition.

ú Segmentation of a top 1 candidate : A top 1 recognition
candidate found in step 3 is segmented by using a Viterbi
decoding algorithm.

û A calculation of λ  using an EM algorithm: For a new

association factor λ , we use the state sequences obtained
in step 4 and an EM algorithm.

Using the new λ  given step 5 and the equation (2), we can
adapt the clean speech model parameters to the noisy speech. The
compensated mean vector of Gaussian mixture is,

i
o
ii µµµ ∆+=ˆ (3)

Where the o
iµ  is the clean speech mean vector of the i-th

Gaussian mixture trained by HMM, and the iµ∆  is a variation

vector in the i-th Gaussian mixture due to the noisy environment
of the recognizer. We can define the iµ∆  as the bias vector b ,

then from the equation (2), (3), the vector iµ̂  is

iµ̂  = o
iµ + 21)1( bb λ+λ− i (4)

Now, we can define the Q-function for finding a new association
factor λ  as follows.
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where T is total length of an input test word and M is a number
of Gaussian mixtures in a state. We desire an association factor

λ  maximizing the equation (5). Using ),( λλQ  in (5), the
gradient becomes
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 where )(ktγ  represents a posteriori probability, and is defined

as follows.
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where ,(λ=M ),,, 21k bbkk Σµ  is a HMM’s model and ty  is

an observation vector in time t . )|( MNl ty  is an output

probability of the l -th Gaussian mixture, and lw is the mixture

weight. By equating the eq. (6) to zero, we can obtain the desired

λ .

2.1.2. A case of a steepest-descent algorithm

To find a new association factor λ , a steepest-descent algorithm
can be used instead of the EM algorithm. When a HMM is given,
we desire to get a new association factor λ  that maximizes the
output probability of the observation vector. A probability P that
an observation vector ty  is an outcome from a given HMM is
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If we take logarithm in both sides of the equation (8), the
gradient  with respect to λ becomes
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where t  is a vector transpose and the mean vector kµ  is
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where kµ~  represents the original mean vector trained by clean

speech.

Then, an estimated association factor λ  is

λ∂
∂⋅β−λ=λ Plog

(11)

where λ  is the previously estimated association factor , β  is
learning rate determining convergence speed. Although the
adaptation may be repeated for convergence, in this paper one



iteration is taken to reduce the recognition time. And β  is
experimentally determined.

Once more differentiation of the equation (9) produces
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where covariance matrices are diagonal and positive definite.
Because the equation (12) is always negative, the log-likelihood
of the equation (8) has a maximum value.

2.2. The EM-driven VTS0 approach in the
cepstral domain

In this section, we explain a model parameter compensation
algorithm using 0th order VTS approximation with cepstral
feature vectors. The clean speech is assumed to be corrupted by
additive noise and spectral tilt. The environment model is as
follows.

NXHY += )(w (13)

where YX, and N  represents respectively a clean speech
vector , a noisy speech vector, and a noise vector. The transfer
function )(wH  represents spectral tilt. Let us define the noise,

n  and spectral tilt vector, h  as unknown random vectors in the
cepstral domain. We assume that they are statistically
independent of the clean speech vector x . By taking logarithm
and DCT (discrete cosine transform) to both sides of equation
(13), we obtain
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where yx,  is respectively a clean speech vector and noisy

speech vector in the cepstral domain and hn,  is respectively a

noise vector and spectral tilt vector in the cepstral domain. C
represents a DCT matrix. If we take a 0th order VTS
approximation in equation (14), the mean and covariance of the
noisy speech vector y  becomes
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Because the vectors n  and h  are expectations of unknown

random vectors, we will estimate the vector n  and h  using an
EM algorithm. First, the noise vector n  is estimated.

The Q-function used for estimating a new noise mean vector n
is
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where ),,( hxxM Σµ=  and the vector h  is a known vector.

Both sides of the equation (16) are differentiated by the vector
n  and we can find the vector n  maximizing the Q-function as
follows.
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where n , h  is respectively initial value of the noise vector n
and the spectral tilt vector h . And k,xµ  is the mean vector of

the k-th Gaussian mixtures of the clean speech vector x . Also,
the expectation of the spectral tilt vector h  can be estimated
through the same procedures as the noise vector n , but at this
time, noise vector n  is assumed to have a known value. The

estimated spectral tilt vector h  is
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Similarly as above, we can also estimate the environment
parameters using the 1st order VTS approximation.

3. EXPERIMENTAL RESULTS

3.1. The database and feature parameters

In our experiments, we evaluate the performance of the proposed
algorithms when there is a mismatch between the training and
testing environments. For isolated word recognition experiments,
we use a left-to-right continuous density-HMM(CHMM)[3] with
3 states. And the database consist of 75 phoneme-balanced
words[4]. The speech samples are recorded in a silent office
environment, and converted by A/D converter with 16KHz
sampling rate and 16bit quantization[5]. The train database is
composed of speech material uttered by 15 speakers, and the test
database is constructed by 5 speakers excluded from the training.
The noise sources used in recognition experiments are additive
white Gaussian noise and car noise recorded at a 90-120[km/h]
speed in an express highway. To get corrupted speech we added
noise to clean speech at various signal-to-noise ratios (SNR). In
this experiments, we use 13 standard Mel-frequency cepstral
coefficients including a normalized frame energy and their
derivatives as the feature parameters. The HMM recognizer is
based on 32 phone like unit (PLU).

3.2. Baseline experiments

The experimental result of the baseline recognizer without model
parameter compensation in noisy speech recognition is as follows.

clean 30dB 20dB 10dB 0dB

AWG 93.9 87.2 54.9 24.3 4.7

CAR 93.9 94.4 89.6 63.2 26.4



Table 1. The result of the baseline recognizer without model
parameter compensation

From the above result, we can see that the recognition rate
deteriorates suddenly below 20dB and 10dB. Furthermore, the
recognition rate in 0dB AWG approaches zero. The recognition
result with matched training and testing environments are shown
in table 2. We can show that the results are superior to any of
them in table 1. Besides, the recognition rate in 0dB AWG case is
improved by about ten times. This experimental result may be
approximately the upper limit of recognition rate. However, this
requires retraining of the recognizer to fit in new environments,
which may not be possible in real situation. Therefore, we need
recognition methods which is robust to noisy environments
without retraining. Next, we discuss experimental results of the
proposed model parameter compensation algorithms.

30dB 20dB 10dB 0dB

AWG 94.4 91.5 85.3 56.3

CAR 93.9 93.9 90.1 89.6

Table 2. The result of the same environment in training and
testing

3.3. Experimental results for model parameter
compensation algorithms

In this experiment, we use the Jack’s knife method for more
reliable performance comparison. MPMC-EM and MPMC-STP
are the modified PMC methods using respectively EM and
steepest-descent algorithms for an association factor. EM-VTS0
is the 0th order mean-VTS using an EM algorithm.

Clean 30dB 20dB 10dB 0dB

PMC 91.4 90.5 81.9 65.0 29.6

MPMC-EM 91.7 90.9 87.0 70.3 31.7

MPMC-STP 91.6 91.1 86.7 70.8 31.5

VTS-0 92.6 91.0 87.0 68.8 27.6

Table 3. The result of AWG noise

Clean 30dB 20dB 10dB 0dB

PMC 91.4 90.5 89.8 85.9 72.5

MPMC-EM 91.7 92.1 90.9 87.8 78.0

MPMC-STP 91.6 91.7 90.7 86.8 73.2

VTS-0 92.6 92.2 91.3 88.9 77.6

Table 4. The result of CAR noise

From the above result, we can see that the MPMC and VTS-0
show better recognition results than the conventional PMC in all
SNR. Also, the algorithms show better recognition results for the
case of CAR noise than the AWG noise. Especially, The
proposed model compensation algorithms show better
performances than conventional PMC in low SNR.

4. SUMMARY

In this paper, we proposed new model parameter compensation
algorithms for noise-robust speech recognition in the cepstral
domain. They have shown good recognition performance, and are
simply realized.

The recognition rate of the MPMC without covariance
compensation is higher than the conventional PMC.  This
confirms that the nonuniform model parameter compensation is
better suited in noisy speech recognition.

The recognition rate of mean-VTS0 is higher than PMC due to
good modeling of environments by reflecting additive noise and
spectral tilt.  More appropriate modeling of noisy environments
may lead to better performances.
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