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Abstract
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An original technique, based on ridge point detec-

tion directly from gray scale �ngerprint images, is pro-

posed. Our method avoids serious problems that algo-

rithms which perform binarization of �ngerprint im-

ages have. Each step can be easily hardware imple-

mented, allowing a relevant speed up of the whole pro-

cess.
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1 Introduction

Automated identi�cation of �ngerprints is a dif-
�cult problem with many important applications.
Many Automated Fingerprint Identi�cation Systems
(AFIS) are already in use in law enforcement applica-
tions. However, the technology is still developing and
there are still many unsolved research problems [4].

The inner surface of a �nger is covered with a pat-
tern of friction ridges. Most �ngerprint recognition
algorithms are typically based on extraction of spe-
ci�c feature points, called minutiae points, located on
ridges [1]. As highlighted in the lower image of Figure
6, a minutia point is de�ned as the location where a
single ridge bifurcates into two ridges or where a ridge
ends. Other features besides minutiae points are fre-
quently used to classify �ngerprints so they can be �led
for future retrieval [3]. In AFIS all �ngerprints with
the same classi�cation are searched for a match with
the input �ngerprint. This step is called the print-to-
print search, i.e., search for a matching of �ngerprints
to determine if they come from the same �nger of an
individual. The print-to-print search compares two
�ngerprint images directly or compares features ex-
tracted from the input �ngerprint image with features
extracted from �ngerprint images in the database.

Several approaches have been proposed in the lit-
erature; although rather di�erent from each other, all
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these methods transform �ngerprint images into bi-
nary images [7, 6]. The main di�culty of this ap-
proach is due to the fact that �ngerprints quality is
often too low, and when binarization is applied to
noisy and low-contrast images often produces unsat-
isfactory results. Noise and contrast de�ciency can
produce false minutiae, which are impossible to de-
tect performing local analysis, and hide valid ones.
Moreover, the binarization process may cause the loss
of a signi�cant amount of information, it requires the
setting of critical threshold values, and it is time con-
suming.

Recently Maio et al. addressed the detection of
ridges directly from gray scale images. The ridge line
following algorithm reported in [5] attempts to locate
local maxima relative to a section orthogonal to the
ridge direction, resulting in highly complicated imple-
mentation which involves seven independent parame-
ters whose values are quite critical.

In this paper we propose an original technique for
direct gray scale �ngerprint ridge detection. Our ba-
sic idea is to view ridge lines as a sequence of maxi-
mum and saddle points. Each step can be easily hard-
ware implemented, allowing a relevant speed up of the
whole feature extraction process.

2 Ridge Points Detection

Mathematically, ridge points are local maxima
along the direction of one of the principal curvature
and they are points where the other principal curva-
ture is zero. Figure 1 shows an ideal ridge.

An obvious way to detect ridge points is to exam-
ine the second derivatives. Let H denote the hessian
matrix at a stationary point p. Let �1 and �2 , such
that j�1j � j�2j, be the characteristic values of H. If p
is a ridge point then �1 < �2 = 0.

Detection of ridge points is not stable. Slight per-
turbations due to various factors (e.g. noise, dis-

cretization grid size) may change zero eigenvalues to
non-zero values. A point which satis�es the previous
condition at a given resolution, may not satisfy the
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same condition at a higher resolution. In general, our
"ideal" ridges will change into a sequence of local max-
ima and saddle points. See Figure 2. Hence it is ap-
propriate to search for such a general pattern rather
than the idealized ridges of Figure 1. A stationary
point p is a local maximum i�

�1 � �2 < 0: (1)

A stationary point p is a saddle point i�

�1�2 < 0:

To distinguish saddle points which are on a ridge
from those which are on a valley, we consider only
the ones which are local maxima in the direction of
maximum change and local minima in the direction of
minimum change. Thus we establish that a stationary
point p is a saddle point i�

�1 < 0

�2 > 0: (2)

Ridge pixels may gradually change their intensity
values along the ridge direction, causing the surface to
have positive or negative slope. This phenomenon is
evident near ridges endings, as Figure 2 shows. Figure
3 shows the zero-crossings of the x and y components
of the gradient of a small area of a �ngerprint shown in
Figure 4. The intersection points between the two zero
levels correspond to the simultaneous zero-crossings of
the x and y gradient components, hence to the station-
ary points. Ridge's branches with positive or negative
slope have no stationary points. Figure 5 shows the
plot of the gradient vectors which correspond to the
portion of a ridge. The branch of the ridge with no
zero-crossing points is highlighted with a circle. Pix-
els on this branch are still maximum points along the
orthogonal direction.

Let p be a point on a ridge which is not a station-
ary point. Let p1 and p2 be the two neighbors of p
along the direction orthogonal to the ridge. Let ~n1
and ~n2 denote the gradient vectors at pixels p1 and
p2. Since p is a maximum point along the orthogo-
nal direction, the gradient vectors ~n1 and ~n2 point at
opposite directions:

~n1

j~n1j
�
~n2

j~n2j
= cos(�) = �1 (3)

In real cases, equation (3) may never be satis�ed
due to the presence of noise. As a consequence, ~n1
and ~n2 will have directions which are \almost" oppo-
site (see Figure 5). This pattern is searched for non

stationary points. The second derivatives are inves-
tigated also for those points, in order to determine
which of them belong to ridges and which of them to
valleys. Same criteria as in (1) and (2) are applied.
A point p whose neighbors satisfy condition (3) is a
ridge point situated on a negative slope i� condition
(1) applies. A point p whose neighbors satisfy condi-
tion (3) is a ridge point situated on a positive slope i�
condition (2) applies.

It is important to underline that using gradient
direction for ridge detection is quite stable, whereas
selecting ridge points by setting a threshold on the
absolute value of the gradient is not a robust condi-
tion. This is because the appropriate threshold may
change from image to image, or even from area to area
within the same image. All our conditions are based
on properties of the intensity surfaces of the gray scale
�ngerprint images. Those properties are direct conse-
quences of the nature of the �ngerprint images.

3 Implementation
Let Ix = @I

@x
and Iy =

@I
@y
. We detect the stationary

points as the simultaneos zero-crossings of Ix and Iy.
We also consider non stationary points which satisfy
condition (3). In our experiments we use the value
5
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� for the angle between ~n1 and ~n2. Hessian matrix

is computed at each selected point using central dif-
ferences. H is a 2 � 2 real symmetric matrix. Thus
calculation of the eigenvalues is trivial. The roots of
the characteristic polynomial, which is a second de-
gree polynomial, directly give the eigenvalues. Once
the eigenvalues are computed points on ridges are eas-
ily determined using (1) and (2).

Fingerprint images may be very noisy, especially
those acquired by ink technique. Thus it is appropri-
ate to smooth the image prior to ridge point extrac-
tion. We smooth the image using geometric heat equa-
tion, by applying gradient descent to the functionalR R

jrI jdxdy. Since we do not attempt to perform bi-
narization, degree of smoothing is not extremely crit-
ical. Still we avoid using smoothing tools such as
convolution with a Gaussian kernel which is equiva-
lent to isotropic di�usion equation. Such non-selective
smoothing tends to smear out the ridges. Geometric
heat equation provides a good enough smoothing while
preserving the ridges, and it is invariant with respect
to contrast.

The upper image of Figure 6 shows the result of
ridge point detection on a sample �ngerprint image
classi�ed as a poor quality image [2]. The origi-
nal �ngerprint image, which belongs to NIST Special
Database 4 [8], is shown in the lower image of Figure
6.



4 Ridge Reconstruction Algorithm
Previous sections presented an easy and robust

technique for �nding ridge points. In this section we
address how to use the ridge points to perform ridge
reconstruction. The purpose of our ridge reconstruc-
tion algorithm is to collect and organize, in meaningful
structures, the detected ridge points which are con-
nected and to properly recover, if present, the gaps
between them. The resulting structures correspond
to our representation of �ngerprint images which can
be directly used to address the print-to-print match-
ing problem. Our ridge reconstruction algorithm is
completely driven by the points already detected. No
ridge following algorithm based on gradient informa-
tion is performed, since ridge points are available.
Each branch of connected points is traced only once
starting from one of its ending point. Once the op-
posite ending point is reached, minimum squared er-
ror (mse) line �tting is performed at both endings,
to determine the directions along which move forward
to look for other nearby branches. If a branch not
traced yet is found, gap is �lled with points and trac-
ing of connected points continues; if a branch of a
ridge already traced is encountered the gap is �lled
with points and the two branches are merged. When
all branches of connected points are traced the algo-
rithm stops. All merged branches belong to the same
data structure which is stored in memory.

The result of the ridge reconstruction algorithm ap-
plied on points shown in the upper image of Figure 6 is
shown in the middle image of the same Figure. In this
case 20 points or at least 4 points (if 20 points are not
available on the branch which is currently traced) are
used, when performing mse line �tting, and 6 pixels
is the distance recovered along the tangent direction
given by the mse line �tting. The algorithm is able to
recover most of the breaks between branches belong-
ing to the same ridge. Moreover, the algorithm is able,
almost always, to avoid false connections which can
arise on account of the presence of noise across ridges.
False connections due to the presence of noise across
ridges are a serious problem of algorithms which per-
form binarization of �ngerprint images. Our algorithm
is able to avoid this problem not allowing gap �lling if
the branch of connected points which has been traced
is too short (less than 4 pixels in our experiments). A
short branch which is not merged with other branches
can be easily removed during a post processing phase.

5 Conclusions and Future Work
For the print-to-print matching problem, bifurca-

tion and end points extraction can easily be performed
directly on the image resulting from our ridge re-

Figure 1: Ideal ridge surface.

construction algorithm. A post processing stage can
eliminate spurious feature points, which may be still
present, based on the structural and spatial relation-
ships of the minutiae. For instance, two minutiae in
a real �ngerprint cannot occur within a distance of
few pixels from each other. Proper heuristics can be
implemented to perform ridge break and spike elimi-
nation. Two end points with the same orientation and
within a distance threshold can be eliminated; an end
point which is connected to a bifurcation point and is
also within a distance threshold can be eliminated.

The resulting ridges form a template which car-
ries information, such as curvature of ridges, length of
ridges, spatial frequencies, orientation, which may be
used to address the print-to-print matching problem,
directly without performing feature points extraction.

These ideas will be further investigated in order to
e�ciently solve the print-to-print matching problem.
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Figure 2: Surface corresponding to a small area of a
�ngerprint. It shows how our \ideal" ridges change
into a sequence of local maxima and saddle points.

Figure 3: Zero-crossings of the x and y components of
the gradient corresponding to a small area of a �nger-
print.

Figure 4: Small area of a �ngerprint.

Figure 5: Gradient vectors corresponding to a portion
of a ridge.

Figure 6: Upper image: result of ridge point detection.
Middle image: result of ridge reconstruction. Lower
image: original sample image (NIST Special Database
4). Bifurcation and end points are highlighted.


