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ABSTRACT

Consider the Hidden Markov model where the realization of a sin-
gle Markov chain is observed by a number of noisy sensors. The
sensor scheduling problem for the resulting Hidden Markov model
is as follows: Design an optimal algorithm for selecting at each
time instant, one of the many sensors to provide the next measure-
ment. Each measurementhas an associatedmeasurementcost. The
problem is to select an optimal measurement scheduling policy, so
as to minimize a cost function of estimation errors and measure-
ment costs. The problem of determining the optimal measurement
policy is solved via stochastic dynamic programming. Numerical
results are presented.

1. INTRODUCTION

There are several signal processing applications where a variety of
sensors are available for measuring a given process, howeverphys-
ical and computational constraints may impose the requirement that
at each time instant, one is able to use only one out of a possible
total of M sensors. There is also growing interest in flexible sen-
sors such as multi-mode radar which can be configured to operate in
one of many modes for each measurement. In such cases, one has
to make the decision: Which sensor (or mode of operation) should
be chosen at each time instant to provide the next measurement. It
may also happen that one can associate with each type of measure-
ment a per unit-of-time measurement cost, reflecting the fact that
some measurements are more costly or difficult to make than oth-
ers, although they may contain more useful or reliable information.
The problem of optimally choosing which one of theM sensor ob-
servations to pick at each time instant is called the sensor schedul-
ing problem. The resulting time sequence which at each instant
specifies the best sensor to choose is termed the sensor schedule
sequence.

Several papers have studied the sensor scheduling problem for
systems with linear Gaussiandynamics where linear measurements
in Gaussian noise are available at a number of sensors (see [1] for
the continuous-time problem and [7] for the discrete-time problem).
For such linear Gaussian systems, if the cost function to be mini-
mized is the state error covariance (or some other quadratic func-
tion of the state), then the solution has a nice form: the optimal sen-
sor schedule sequence can be determined a priori and is indepen-
dent of the measurement data (see [1], [7] for details). This is not
surprising; since the Kalman filter covariance is independentof the
observation sequence.

In this paperwe study the discrete-time sensor schedulingprob-
lem when the underlying process is a finite state Markov chain that
is observed in white noise. The signal model is as follows: At each

time instant, observationsof a Markov chain in white noise are made
at M different sensors. However, only one sensor observation can
be chosen at each time instant. The aim is to devise an algorithm
that optimally picks which single sensor to use at each time instant,
in order to minimize a given cost function. We will show that un-
like the linear Gaussian case, the optimal sensor schedule in the
HMM case is data dependent. This means that past observations
together with past choices of which observation to pick influence
which observation to choose at present.

We have already mentioned that the papers [7] (discrete-time)
and [1] (continuous-time) have considered the sensor scheduling
problem for linear-Gaussian systems. We also draw the readers at-
tention to [2] which treats the sensor scheduling problem for con-
tinuous time nonlinear systems. The general problem of stochastic
control of partially observedfinite-state Markov processesis treated
in [10] (discrete-time) and [9] (continuous-time) as well as in the
standard texts [6, 3]. We remark that while we use techniques from
discrete-time stochastic control to solve the sensor schedulingprob-
lem, our problem is quite different in that the control (i.e. the sen-
sor selection) does not enter into the dynamics of the Markov chain.
In this sense the sensor scheduling problem is really an estimation
problem and not a control problem.

The rest of the paper is organised as follows. In Section 2 we
define the signal model followed in Section 3 with the formula-
tion of the scheduling and estimation problem. In Section 4 we
derive an equivalent fully observed stochastic control problem and
give the relevant dynamic programming equations. In Section 5 we
solve the dynamic programming equations numerically for some
simple examples before concluding the paper and discussing some
directions for further work.

Before we proceed we note that the purpose of this paper is
to present the important problem of optimal sensor scheduling for
hidden Markov models and to illustrate succinctly, the key ideas
that lead to a solution of the problem via stochastic dynamic pro-
gramming. This has necessitated a somewhat formal treatment of
stochastic dynamic programming similar to the presentation in [3]
which does not use the setting of measure theoretic probability. The
main implication of this is that our probability measures and expec-
tations are not mathematically well defined. We remark only that
the ideas we present can be made mathematically rigorous without
changing the main results. For a rigorous treatment of discrete-time
stochastic dynamic programming, the reader is referred to [4] and
[5, Chapter 10].

2. SIGNAL AND SENSOR MODELS

Let k = 0; 1; : : : denote discrete time. Assume Xk is an S-state
Markov chain with state space fe1; : : : ; eSg. Here ei denotes the



S-dimensional unit vector with 1 in the i-th position and zeros else-
where. This choice of using unit vectors to represent the state space
considerably simplifies our subsequent notation. Let

aji = P (Xk = eijXk�1 = ej); i; j 2 f1; : : : ; Sg

denote the transition probabilities of the Markov chain and let

�0(i) = P (X0 = i); i 2 f1; : : : ; Sg

denote our a priori knowledge of the Markov chain. Write A =
[aji]S�S and �0 = [�0(i)]S�1 .

Assume there areM noisy sensors available which can be used
to give measurements ofXk . If the i-th sensor is chosen at time k,
we make the scalar observation

y
(i)
k = H

(i)
k Xk +�(i)

k Xkv
(i)
k ; i = 1; 2; : : : ;M

Here H(i)
k and�(i)

k denote S element row vectors and v(i)k denotes

white noise with known density f (i). We assume v(i)k is indepen-
dent of v(j)k , i 6= j.

At each time instant k, we are allowed to pick only one of the
M possible sensormeasurementsy(i)k , i 2 f1; : : : ;Mg. Also hav-
ing picked this observation y(i)k , we are not allowed to look at any
of the other M � 1 observations at time k.

A notationally convenientway of expressing this choice of pick-
ing one of M observations is again to use unit vectors. Let uk de-
note a M state process; at each time it takes on one of M possi-
ble unit vectors e1; : : : ; eM . We will use this process uk to de-
note which sensor to pick at time k. Then our choice of picking
one sensor is equivalent to defining a new observation process yk
as follows

yk(uk) =
MX
i=1

u
0
k ei y

(i)
k

Clearly if uk = ei, then yk(uk) = y
(i)
k .

We can now conveniently express the signal model as

yk(uk) = Hk(uk)Xk +�k(uk)Xk vk(uk) (1)

where uk 2 fe1; : : : ; eMg and

Hk(uk) =
MX
i=1

u
0
k eiH

(i)
k

�k(uk) =
MX
i=1

u
0
k ei �

(i)
k

vk(uk) =
MX
i=1

u
0
k ei v

(i)
k

Remarks:
1. In the signal model (1) we have assumed that only one sensor is
picked at each time. This is purely for convenience. It is straight-
forward to generalize the model to picking �M sensors (where �M <

M ) at each time instant by merely increasing the dimension of uk
as follows: Define uk = (uk(1); : : : ; uk( �M)0 where each uk(i)
is a unit vector. Then the signal model is identical to (1).
2. Note that vk(uk) is a white noise process. In particular, its sam-
ple path v1(u1); : : : ; vk(uk) is obtained by pasting together the
appropriate sections of the sample paths of the white noise processes
v
(1)
k ; v

(2)
k ; : : : ; v

(M)
k .

3. THE SCHEDULING/ESTIMATION PROBLEM

Let Yk = fu1; u2; : : : ; uk; y1(u1); y2(u2); : : : ; yk(uk)g so that
Yk represents the information available at time k upon which to
baseestimates and sensor schedulingdecisions. The sensorschedul-
ing and estimation problem proceeds in three stages for each k =
0; 1; : : : ;N � 1, where N is a fixed positive integer.

1) Scheduling:

Based on Yk we generate uk+1 = �k+1(Yk) which determines
which sensor is to be used at the next time step.

2) Observation:

We then observe yk+1(uk+1) where uk+1 is the sensor selected in
the previous stage.

3) Estimation:

After observing yk+1(uk+1) we generate our next estimate of the
state (or some function of the state) of the Markov chain: ek+1 =
�k+1(Yk+1).

With these steps in mind, we define the sensor scheduling se-
quence

� = f�1; �2; : : : ; �Ng

and the estimator sequence

� = f�1; �2; : : : ; �Ng

and say that the scheduler/estimator sequencesare admissible if �k
is a function of Yk and �k+1 maps Yk to fe1; e2; : : : ; eMg. Note
that � and � are sequences of functions.

We assume that there is a cost associated with estimation errors
and with the particular sensor schedule chosen. In particular, sup-
pose that at each time, we wish to obtain estimates of some function
of the Markov state sk(Xk) where sk : RS ! RS0

. Let the es-
timation error be measured by the function gk : RS0

! R. Then
we consider the cost function

J�;� = Ef
NX
k=1

gk(sk(Xk)� �k(Yk))

+
N�1X
k=0

ck(Xk; �k+1(Yk))g

so that at each time the cost grows by an estimation error and per
unit time sensor usage charge. Our aim is to minimise the total ex-
pected cost over all admissible scheduler/estimator laws.

The problem is greatly simplified by noting that the choice of
estimator �k does not impact on the future evolution of the system.
This means the estimator optimization can be done independently
at each time step. We now consider two examples:

1) MMSE:

Let gk(t) = t0t so that the estimation criterion is the mean squared
error. In this case it is well known that the conditionalmean estima-
tor is optimal so that we would choose�k(Yk) = Efsk(Xk) j Ykg.



2) MAP:

Let gk(t) = 1 if t 6= 0 and 0 otherwise. In this case the optimal
estimator is the maximum a posteriori estimator �k(Yk) = sk(ei�)
where i� = argmaxi P (Xk = ei j Yk).

In the sequel we will concentrate on the MMSE case for which
the cost functional becomes (note that it is no longer a function of
� since the estimator law has been specified)

J� = Ef
NX
k=1

(sk(Xk)� ŝk)
0(sk(Xk)� ŝk)

+
N�1X
k=0

ck(Xk; �k+1(Yk))g (2)

where

ŝk = Efsk(Xk) j Ykg =
SX
i=1

sk(ei) P (Xk = ei j Yk)

and our aim is to optimize J� over the set of admissible control
laws.

4. STOCHASTIC DYNAMIC PROGRAMMING
FRAMEWORK

In this section we reformulate the optimal sensor scheduling prob-
lem as a fully observed stochastic control problem and give the dy-
namic programming equations that characterize the solution.

We begin by expressing the cost in terms of the conditional
state probabilities (which constitute the information state for our
problem),

�k = [�k(1); �k(2); : : : ; �k(S)]
0
:

where �k(i) = P (Xk = ei j Yk). Using the smoothing property
of conditional expectation, the cost functional of (2) can be rewrit-
ten in the form

J� = EfCN (�N ) +
N�1X
k=0

Ck(pik; �k+1(�k))g (3)

where

CN (�N ) =
SX
i=1

(sN(ei)� ŝN )0(sN (ei)� ŝN ) �N (i);

Ck(�; u) =
SX
i=1

�
(sk(ei)� ŝk)

0(sk(ei)� ŝk) + ck(ei; u)
�
�k(i)

for k 2 f1; : : : ;N � 1g and

C0(�; u) =
SX
i=1

c0(ei; u) �0(i):

Note that since �k is a sufficient statistic for Yk , we have (without
loss of generality) assumedthat�k+1 is a function of�k rather than
Yk .

Next we write down the recursive filter for the evolution of the
state �k (see [8]). First note that

�k+1(i) =
F (uk+1; yk+1(uk+1); ei)

PS

j=1 aji �k(j)PS

i=1 F (uk+1; yk+1(uk+1); ei)
PS

j=1 aji �k(j)

where

F (uk; yk(uk); ei) = f
(uk)

�
yk(uk)�Hk(uk) ei

�k(uk) ei

�

Writing

B(uk; yk(uk)) = diag

0
BBB@
F (uk; yk(uk); e1)
F (uk; yk(uk); e2)

...
F (uk; yk(uk); eS)

1
CCCA

where diag(t) is a diagonal matrix with t along the diagonal, we
thus have

�k+1 =
B(uk+1; yk+1(uk+1))A

0 �k

hB(uk+1; yk+1(uk+1))A0 �k; 1i
(4)

where h�; �i denotes the standard inner product in RS and 1 rep-
resents an S-dimensional vector of ones. For ease of notation we
express (4) as

�k+1 = T (�k ; uk+1; yk+1(uk+1)) (5)

We now have a fully observed control problem: find an admis-
sible control law, �, which minimizes the cost functional of (3),
subject to the state evolution equation of (5).

Dynamic Programming Solution

Based on the above formulation of the scheduling problem, the so-
lution to the optimal sensor scheduling problem is obtained from
the Dynamic Programming algorithm which proceeds backwards
in time from k = N to k = 0:

JN (�N ) = CN (�N)

and for k = N � 1;N � 2; : : : ; 0

Jk(�k) = min
uk+12f1;::: ;Mg

[ Ck(�k; uk+1)

+

Z
R

Jk+1 (T (�k; uk+1; yk+1))

hB(uk+1; yk+1)A
0
�k; 1idyk+1 ] (6)

The optimal cost starting from the initial condition �0 is given by
J0(�0) and if u�k+1 = ��k+1(�k) minimises the right hand side of
(6) for each k and each �k , the scheduling policy

�
� = f��1 ; �

�
2; : : : ; �

�
Ng

is optimal.
We note that the state is now continuous valued and the dy-

namic programming equations involve an integral over the contin-
uous valued observation space. A practical (suboptimal) algorithm
can be obtained by discretising the state and observation spaces.
This is the method we use to obtain the (approximate) optimal sen-
sor scheduling policies for some simple examples in the following
section.
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Figure 1: Optimal Scheduling Policy for Scenario 1

5. NUMERICAL EXAMPLES

We consider a two state (S = 2) Markov chain with transition
probabilities a11 = a22 = 0:8 and a12 = a21 = 0:2. Obser-
vations are available from two sensors (M = 2) with H

(1)
k =

H
(2)
k = [0 1]. The sensors differ in the noise scaling terms �(1)

k

and �(2)
k and the costs of using the sensors per unit time of c1 =

ck(ei; 1) and c2 = ck(ei; 2). We choose sk(x) = x giving ŝk =
�k and leading to an estimation error cost of 1 � �0k�k at time k.
Note that this cost is minimized when�k = ei for some i and max-
imise when all the conditional state probabilities are equal. The fi-
nite time horizon was set to N = 20. We consider two scenarios.

Scenario One: First, we model a situation when sensor one is
significantly better than sensor two by choosing �(1)

k = [0:1 0:1]

and �
(2)
k = [2:0 2:0]. Not surprisingly when the costs of using

each sensor are equal (c1 = c2) the optimal policy was to use sen-
sor one all the time. As the cost of using sensor one is increased
however, the optimal policy tends to select sensor one only when
the state estimate is uncertain. An example is shown in Figure 1
for the case c1 = 0:5 and c2 = 0:0. In this figure (and in Figure 2)
the horizontal axis represents the time coordinate from k = 1 to
k = N = 20. The horizontal axis is the conditional probability
that the Markov chain is in state e1 at the time of interest. Note
that since �k(1) + �k(2) = 1 these figures fully specify the opti-
mal scheduling policies. Note that within a few steps of the termi-
nal time, the advantage of using sensor one in terms of improved
state estimates, is not great enough to outweigh the cost of using
the better sensor.

Scenario Two: In this scenario we have a situation where sen-
sor one gives good measurements of the Markov chain when the
chain is in one state and poor quality measurements when the chain
is in the other state and vice versa for sensor two. We model this
by setting �(1)

k = [0:1 2:0] and �(2)
k = [2:0 0:1] with c1 = c2.

Given the symmetry of the model, it is not surprising that we obtain
the optimal control policy shown in Figure 2 which says simply:
use the sensor which gives good measurements of the state you are
most likely to be in.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have tackled the optimal sensor scheduling prob-
lem for (finite-state) hidden Markov models using a stochastic dy-
namic programming framework. At this early stage, approximate
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Figure 2: Optimal Scheduling Policy for Scenario 2

optimal scheduling policies can be derived by a brute force discreti-
sation of the dynamic programming equations. Future work will
look at efficient techniques for calculating optimal policies and de-
tailed applications of these techniques to sensor managementprob-
lems.
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