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ABSTRACT

Consider the Hidden Markov model where the realization of asin-
gle Markov chain is observed by a number of noisy sensors. The
sensor scheduling problem for the resulting Hidden Markov model
is as follows: Design an optimal algorithm for selecting at each
time instant, one of the many sensorsto provide the next measure-
ment. Each measurement hasan associated measurement cost. The
problem isto select an optimal measurement scheduling policy, so
as to minimize a cost function of estimation errors and measure-
ment costs. The problem of determining the optimal measurement
policy is solved via stochastic dynamic programming. Numerical
results are presented.

1. INTRODUCTION

Thereare several signal processing applicationswhere avariety of
sensorsare availablefor measuring agiven process, however phys-
ical and computational constraints may imposethe requirement that
at each time instant, one is able to use only one out of a possible
total of M sensors. There is also growing interest in flexible sen-
sorssuch as multi-mode radar which can be configuredto operatein
one of many modes for each measurement. In such cases, one has
to makethe decision: Which sensor (or mode of operation) should
be chosen at each time instant to provide the next measurement. It
may also happen that one can associate with each type of measure-
ment a per unit-of-time measurement cost, reflecting the fact that
some measurements are more costly or difficult to make than oth-
ers, although they may contain more useful or reliableinformation.
The problem of optimally choosing which one of the M sensor ob-
servationsto pick at eachtimeinstantis called the sensor schedul-
ing problem. The resulting time sequence which at each instant
specifies the best sensor to choose is termed the sensor schedule
sequence.

Several papers have studied the sensor scheduling problem for
systemswith linear Gaussiandynamicswherelinear measurements
in Gaussian noise are available at a number of sensors (see[1] for
the continuous-timeproblem and [ 7] for thediscrete-time problem).
For such linear Gaussian systems, if the cost function to be mini-
mized is the state error covariance (or some other quadratic func-
tion of the state), then the solution hasanice form: the optimal sen-
sor schedule sequence can be determined a priori and is indepen-
dent of the measurement data (see [1], [7] for details). Thisis not
surprising; sincethe Kalman filter covarianceisindependent of the
observation sequence.

In this paper we study the discrete-time sensor scheduling prob-
lem when the underlying processis afinite state Markov chain that
isobservedin white noise. Thesignal model isasfollows: At each
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timeinstant, observationsof aMarkov chaininwhite noisearemade
at M different sensors. However, only one sensor observation can
be chosen at each time instant. The aim is to devise an algorithm
that optimally pickswhich single sensor to use at each time instant,
in order to minimize a given cost function. We will show that un-
like the linear Gaussian case, the optimal sensor schedule in the
HMM case is data dependent. This means that past observations
together with past choices of which observation to pick influence
which observation to choose at present.

We have already mentioned that the papers[7] (discrete-time)
and [1] (continuous-time) have considered the sensor scheduling
problem for linear-Gaussian systems. We also draw the readers at-
tention to [2] which treats the sensor scheduling problem for con-
tinuoustime nonlinear systems. The general problem of stochastic
control of partially observedfinite-state Markov processesistreated
in [10] (discrete-time) and [9] (continuous-time) as well asin the
standard texts[6, 3]. Weremark that while we use techniquesfrom
discrete-time stochastic control to solvethe sensor scheduling prob-
lem, our problem is quite different in that the control (i.e. the sen-
sor selection) doesnot enter into the dynamicsof theMarkov chain.
In this sensethe sensor scheduling problem is really an estimation
problem and not a control problem.

Therest of the paper is organised as follows. In Section 2 we
define the signal model followed in Section 3 with the formula-
tion of the scheduling and estimation problem. In Section 4 we
derive an equivalent fully observed stochastic control problem and
givetherelevant dynamic programming equations. In Section5we
solve the dynamic programming equations numerically for some
simple examplesbefore concluding the paper and discussing some
directions for further work.

Before we proceed we note that the purpose of this paper is
to present the important problem of optimal sensor scheduling for
hidden Markov models and to illustrate succinctly, the key ideas
that lead to a solution of the problem via stochastic dynamic pro-
gramming. This has necessitated a somewhat formal treatment of
stochastic dynamic programming similar to the presentationin [3]
which doesnot usethe setting of measuretheoretic probability. The
mainimplication of thisisthat our probability measuresand expec-
tations are not mathematically well defined. We remark only that
theideaswe present can be made mathematically rigorous without
changingthe main results. For arigoroustreatment of discrete-time
stochastic dynamic programming, the reader is referred to [4] and
[5, Chapter 10].

2. SIGNAL AND SENSOR MODELS

Letk = 0,1,... denotediscrete time. Assume X, isan S-state
Markov chain with state space {e1, ... ,es}. Here e; denotesthe



S-dimensional unit vector with 1 in the:-th position and zeroselse-
where. Thischoiceof using unit vectorsto represent the state space
considerably simplifies our subsequent notation. Let

aji = P( Xy = €| X1 = ¢5), i, €4{1,...,S}
denote the transition probabilities of the Markov chain and let
(i) = P(Xo=1), 1 €{1,...,5}

denote our a priori knowledge of the Markov chain. Write A =
[aji]lsxs and mo = [70(2)]sx1-

Assumethereare M noisy sensorsavailablewhich can beused
to give measurements of X. If the ¢-th sensor ischosenat time £,
we make the scalar observation

W= HOX 20X, =12, M

Here /") and =) denote S element row vectorsand »") denotes
white noise with known density £(*). We assume v\"’ isindepen-
dent of v{/), i # ;.

At each time instant &, we are allowed to pick only one of the
Mposiblesensormeawrements;/g),i e {1,...,M}. Alsohav-
ing picked this observation ygj), we are not allowed to look at any
of the other M — 1 observationsat time k.

A notationally convenientway of expressingthischoiceof pick-
ing one of M observationsis again to use unit vectors. Let «; de-
note a M state process; at each time it takes on one of M possi-
ble unit vectorses, ... ,ear. We will use this process uy to de-
note which sensor to pick at time k. Then our choice of picking
one sensor is equivalent to defining a new observation process yx
asfollows

M

yk(uk) = Z ufk €; ygj)
=1

Clearly if ux, = e;, thenyy (ux) = yg)-

We can now conveniently expressthe signal model as

where uy € {e1,... ,en} and

Remarks:

1. Inthe signal model (1) we have assumed that only one sensor is
picked at each time. Thisis purely for convenience. It is straight-
forward to generalizethe model to picking M sensors(where M <
M) at each time instant by merely increasing the dimension of «,
asfollows: Defineux = (ux(1),...,ux(M) where each ux(s)
isaunit vector. Then the signal model isidentical to (1).

2. Notethat v (ux ) isawhite noise process. In particular, its sam-
ple path v1 (u1), ... , vx(ux) is obtained by pasting together the
appropriate sectionsof the samplepaths of thewhite noise processes
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3. THE SCHEDULING/ESTIMATION PROBLEM

Let i = {w,u2,. .. up, y1(u1), y2(u2), ..., yx(ur)} sothat
Y: represents the information available at time & upon which to
baseestimates and sensor schedulingdecisions. The sensor schedul -
ing and estimation problem proceedsin three stages for each £ =
0,1,...,N — 1,where N isafixed positive integer.

1) Scheduling:

Based on Y. we generate ux41 = pr+1(Yx) which determines
which sensor is to be used at the next time step.

2) Observation:

Wethen observeyi+1 (uxr+1) Where ux41 isthe sensor selectedin
the previous stage.

3) Estimation:

After observing yx+1(ux+1) We generate our next estimate of the
state (or some function of the state) of the Markov chain: ex+1 =
ext1 (Vi)

With these steps in mind, we define the sensor scheduling se-
quence

n= {Hl,ﬂ2,~~~ a“N}
and the estimator sequence
e={e1,€e2,...,ex}

and say that the scheduler/estimator sequencesare admissibleif ¢y
isafunction of Yz and prx+1 mapsYx to {e1,e2,...,enr}. Note
that 1 and e are sequencesof functions.

We assumethat thereisacost associated with estimation errors
and with the particular sensor schedule chosen. In particular, sup-
posethat at eachtime, wewish to obtain estimates of somefunction
of the Markov state s, (Xx) where s, : R° — R, Letthees-
timation error be measured by the function g : R — R. Then
we consider the cost function

Twe = BAY on(sr(Xa) — ex(%2))

k=1

Z

+ cu( Xk, pr1(Ye))}

0

e
Il

so that at each time the cost grows by an estimation error and per
unit time sensor usage charge. Our aimis to minimise the total ex-
pected cost over all admissible scheduler/estimator laws.

The problem is greatly simplified by noting that the choice of
estimator ¢; doesnot impact on the future evolution of the system.
This means the estimator optimization can be doneindependently
at each time step. We now consider two examples:

1) MM SE:

Let g (¢) = 't sothat the estimation criterion is the mean squared
error. Inthiscaseit iswell known that the conditional mean estima-
tor isoptimal so that wewould choosee (Yi) = E{sx(X%) | Yz }.



2) MAP:

Let gx(t) = 1if ¢t # 0 and 0 otherwise. In this case the optimal
estimator isthe maximum aposteriori estimator e (Y%) = sx(eix)
where:* = argmax, P(Xr = e; | Yz).

In the sequel we will concentrate on the MM SE casefor which
the cost functional becomes (note that it is no longer a function of
e since the estimator law has been specified)

N

Ju=B{D(sk(Xx) = 3)'(sk(Xn) = 3x)

k=1

Z

+ ek (Xn, pr+1(Ye))} (2

0

e
Il

where

S
E{Sk Xk |Yk Z Xk—ez |Yk)

and our aim is to optimize J,, over the set of admissible control
laws.

4. STOCHASTIC DYNAMIC PROGRAMMING
FRAMEWORK

In this section we reformulate the optimal sensor scheduling prob-
lem asafully observed stochastic control problem and give the dy-
namic programming equations that characterize the solution.

We begin by expressing the cost in terms of the conditional
state probabilities (which constitute the information state for our
problem),

7 = [mr(1), Tk(2), ... ,Wk(S)]/.

where 7 (1) = P (Xx = e; | Y&). Using the smoothing property
of conditional expectation, the cost functional of (2) can be rewrit-
ten in the form

N-1
Ju =E{Cn(xx)+ Y Cr(pir, prtr(7x))} ©)
k=0
where

)= S om(e) = 3w (o () = ) i,

Z ) — 3k) (Sk(ei)—ﬁk)—l—ck(ei,u)] 7k(1)

=1

forke{1l,..., N—1}and

S
§ Co ez,

=1

Note that since 7, is asufficient statistic for Yz, we have (without
lossof generality) assumedthat yx+1 isafunction of 7y, rather than
Y.

Next we write down the recursivefilter for the evolution of the
state 71, (see[8]). First note that

Furgr, yrgr (urgr),

ei) 3701 aji 7k (5)

Trt1 (i) = ‘
Zis=1 Fugsr, yrt1(wrsn), eq) ZﬂS:l aji 7k ()
where
N — plur) yr(ur) — Hi(ur) e
Fluk, yu(ux), e:) = f < Lp(ur) e

Writing
F(ug, yre(ur), e1)
_ F(ug, yr(ur), e2)
B(uk,yk(uk)) :dlag .
Fug, yx(ur), es)

where diag(t) is a diagonal matrix with ¢ along the diagonal, we
thus have

B(ukt1, yrg1(untr)) A mp
(B(tr41, Y1 (wrs1)) A 7, 1)

4)

Tkl =

where (-, -} denotes the standard inner product in R and 1 rep-
resents an .S-dimensional vector of ones. For ease of notation we
express(4) as

Trt1 = T (T, wkt1s Yot (Wet1)) ®

We now haveafully observed control problem: find an admis-
sible control law, g, which minimizes the cost functional of (3),
subject to the state evolution eguation of (5).

Dynamic Programming Solution

Based on the above formulation of the scheduling problem, the so-
lution to the optimal sensor scheduling problem is obtained from
the Dynamic Programming algorithm which proceeds backwards
intimefromk = Ntok =0:

In(rn) =
andfork=N—-1,N—2,...,0

Cn(7w)

Je(mr) = min

Cr(mr, uk
uk+1€{17~~~7M}[ ( +1)

+/ o1 (T(Tk, wht1, Yrt1))
R

(B(uk1, yr41)A'mr, 1) dyria ] (6)

The optimal cost starting from the initial condition 7 is given by
Jo(mo) andif uyy = piy, (mx) minimisesthe right hand side of
(6) for each £ and each =, the scheduling policy

w={ul n3, . 0N}

isoptimal.

We note that the state is now continuous valued and the dy-
namic programming equationsinvolve an integral over the contin-
uousvalued observation space. A practical (suboptimal) algorithm
can be obtained by discretising the state and observation spaces.
Thisisthe method we use to obtain the (approximate) optimal sen-
sor scheduling policies for some simple examplesin the following
section.
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Figure 1: Optimal Scheduling Policy for Scenario 1

5. NUMERICAL EXAMPLES

We consider a two state (S = 2) Markov chain with transition
probabllltles a1 = a2 = 0.8 and a2 = a1 = 0.2, Obser-
vations are available from two sensors (M = 2) with " =
H® = [0 1]. The sensors differ in the noise scaling terms -

and Ef) and the costs of using the sensors per unit time of ¢; =
cr(ei, 1) and c2 = ce(es, 2). Wechoosesy(z) = z giving 3 =
75, and leading to an estimation error cost of 1 — 7, 7 at time k.
Notethat this costisminimized when =, = e; for some and max-
imise when all the conditional state probabilities are equal. Thefi-
nite time horizon wassetto N = 20. We consider two scenarios.
Scenario One: First, we model asituation when sensor oneis
significantly better than sensor two by choosing (") = [0.1 0.1]

and (> = [2.0 2.0]. Not surprisingly when the costs of using
each sensor are equal (c1 = ¢2) the optimal policy wasto use sen-
sor one al the time. As the cost of using sensor one is increased
however, the optimal policy tends to select sensor one only when
the state estimate is uncertain. An example is shown in Figure 1
forthecasec; = 0.5 and ¢, = 0.0. Inthisfigure (and in Figure 2)
the horizontal axis represents the time coordinate from & = 1 to
k = N = 20. The horizontal axis is the conditional probability
that the Markov chain is in state e; at the time of interest. Note
that since (1) + 7% (2) = 1 these figuresfully specify the opti-
mal scheduling policies. Note that within afew steps of the termi-
nal time, the advantage of using sensor one in terms of improved
state estimates, is not great enough to outweigh the cost of using
the better sensor.

Scenario Two: In this scenario we have a situation where sen-
sor one gives good measurements of the Markov chain when the
chainisin onestate and poor quality measurementswhen the chain
is in the other state and vice versa for sensor two. We model this
by setting £ = [0.1 2.0] and =(*) = [2.0 0.1] with ¢1 = cs.
Giventhe symmetry of themodel, it isnot surprising that we obtain
the optimal control policy shown in Figure 2 which says simply:
use the sensor which gives good measurements of the state you are
most likely to bein.

6. CONCLUSIONSAND FUTURE WORK

In this paper we have tackled the optimal sensor scheduling prob-
lem for (finite-state) hidden Markov models using a stochastic dy-
namic programming framework. At this early stage, approximate
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Figure 2: Optimal Scheduling Policy for Scenario 2

optimal scheduling policiescan bederived by abruteforce discreti-
sation of the dynamic programming equations. Future work will
look at efficient techniquesfor calculating optimal policiesand de-
tailed applications of these techniquesto sensor management prob-
lems.
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