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ABSTRACT
In processing of sonar data, beamforming process plays a central
role in reducing the effects of the surface and bottom
reverberation. In shallow water environments where the
reverberation is dominant, target detection from the beamformed
results is not effective and may lead to significantly high false
alarm rate. This paper presents a novel approach for post-
processing sonar beamformed imagery in order to improve the
detectability of the targets while substantially reducing the
occurrence of the false detection. This is done using the recursive
high order correlation (RHOC) method which exploits the
spatial-temporal correlation between consecutive pings of the
beamformed images. Test results on several sets of sonar data
show the great efficiency and power of the proposed method
especially in very high cluttered environments.

1. INTRODUCTION

The problem of ocean mines is a real and ongoing threat to the
safety of naval vessels especially in shallow water environments
[1], [2]. Due to the vastness of the ocean, the small size of mines,
the acoustically reverberant environment and the frequent
occurrence of biologics or magnetic clutter, which can mask the
presence of mines and present false detection, the development
of advanced signal processing schemes for underwater target
detection from sonar data becomes of utmost importance.
Considerable attention has been recently focused on this area and
numerous approaches have been developed to aid in detection of
underwater targets/mines. Generally, these research efforts have
been concentrated on three major topics: Pre-processing,
Beamforming and Post-processing. The post-processing scheme
is addressed in this paper. In post-processing, the beamformed
output image is further processed to find additional clues to
distinguish targets from the background clutter. This facilitates
the sonar operator’s decision making task and helps to provide
higher target detection rate while reducing the false alarm rate. In
[3], statistical features, i.e., mean, standard deviation, skewness
and kurtosis were calculated for target size windows in the
digitized beamformed sonar imagery. The combination of these
statistical measures provides an additional clue about the
presence of a target versus clutter. In [4], several methods
including energy detector, sliding matched filter, skewness

matched filter and dispersion-based reconditioning were applied
to the Toroidal Volume Search Sonar (TVSS) [1],[2]
beamformer output in order to increase the signal-to-
reverberation ratio. It was reported that while the skewness
matched filter offers some improvements, the dispersion-based
reconditioning provides considerable improvements. However,
the common drawback of these post-processing schemes is that
the spatial-temporal correlational information of the target in
several consecutive pings of the sonar system is ignored.

In this paper, a novel method based on recursive high order
correlation (RHOC) is developed. The original RHOC method
was developed [5] to detect multiple dim target tracks in heavily
cluttered background from infrared (IR) satellite data. This
method is extended in this paper for post-processing of highly
cluttered beamformed sonar images of several pings. The basic
assumption behind this approach is that target should
consistently appear in a limited area (beam x range) in several
consecutive pings. The effectiveness of the proposed scheme is
demonstrated on several sonar images with different clutter
density and target characteristics.

2. Recursive High Order Correlation
(RHOC) Method

Target detection schemes such as spatio-temporal filtering,
maximum likelihood (ML) estimation and recursive Kalman
filtering [8], [9] generally use certain assumptions about the
target signatures and the background clutter in order to reduce
the computational requirements. For applications where such
assumptions are valid, these methods perform well. However, if
no a priori information about the statistics of signals and clutter
and/or noise is available and further the signals are not simply
distributed or are highly correlated, these methods may give
inferior results. On the contrary, RHOC method does not make
any a priori assumption about the number of targets, target's
dynamical information and initial conditions and background
clutter. Using RHOC as a post-processor for beamformed sonar
data was initiated by the following facts. First, the along track
coverage of the sonar system widens with distance hence causing
a target to be present in multiple consecutive pings. RHOC is
capable of determining the temporal and spatial dependencies of
consecutive pings of data. Second, no a priori information is
available about the targets and clutter/noise in the sonar data.



These two reasons make the application of RHOC very attractive
for post-processing sonar imagery.

2.1 RHOC for Sonar Imagery

Since the target is stationary in the water column and the vehicle
moves toward certain direction, there is a time-dependency
between the adjacent pings of data. To find these dependencies,
cross-correlations between adjacent pings can be calculated. In
the conventional cross-correlation method, only spatio-temporal
information between two consecutive pings can be determined.
RHOC method solves this problem by allowing one to calculate
the correlations among several consecutive pings recursively [5]
as opposed to only two pings.

The basic assumptions behind this approach are: targets should
consistently appear in a limited area (beam x range) in several
consecutive pings and there might be more than one target in the
searching region. In addition, the targets may be low observable
or even missing in certain pings due to the movement of the
vehicle on which the sonar system is deployed.

The first order correlation can be calculated using:
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B(k, l, n) is the beamformed result of ping n at position (k, l), i.e.,
beam k and range l. Thus, R1(k, l, n) which represents the result
of first order correlation provides information on how the points
of B(k ,l ,n) at ping n are correlated to their neighboring points
B(k+i, l+j, n+1) at ping n+1. The correlation is evaluated in a
window of size (2M+1) x (2N+1). This window size is chosen
under the assumption that the target location changes (due to
vehicle’s movement) from one ping to the next do not exceed
certain limits. In order to calculate the 1st order correlation of
ping n and ping n+1 at (k, l), the products of B(k, l, n) and B(
k+i, l+j, n+1), windowj,i ∈ , are summed and thresholded. It is

quite obvious that if ( ) 1n,l,kR1 = , then there is a two-point
spatio-temporal sequence initiated at location (k, l) of ping n to
location (k+i, l+j) of ping n+1. Although this process can be
repeated to identify all such two-point sequences, it can not
provide correlational information of more than two pings of data.
However, in order to declare a detection, we need to verify if the
target shows consistently in three out of four consecutive pings
of data. To calculate the higher order correlation in more than
two consecutive pings, RHOC builds memory into the process
and computes correlations of R recursively using:
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where p is the order of the correlation, n is the index of pings
which varies from 1 to nmax. When the order p increases, nmax

should decrease such that 0max nnp =+  for computing

correlations among n0 consecutive pings. The initial condition for

the above recursive equation is ( ) ( )n,l,kBn,l,kR0 = . If

( ) 1n,l,kRp = , that means a possible target location appears
consistently in (p+1) consecutive pings. The entire process is
illustrated in Figure 1.
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Figure 1.  RHOC for Different Orders.

The choice of p is very critical in the RHOC process since it
presents a trade-off between clutter removal capability of the
RHOC and its sensitivity to missing target peaks at certain pings.
More specifically, large p gives better clutter rejection but at the
same time increases the likelihood of losing the target peak in the
final RHOC result when there are several missing target peaks in
some of the pings. The effect of p will be shown clearly in the
testing results of Section 4.

3. TVSS Sonar System and Beamforming [1]

The Toroidal Volume Search Sonar (TVSS) is an active sonar,
designed for detection of all types of targets located in water
column including volume, close tethered, and close-close
tethered [1],[2]. It provides a detection range of 675 meters with
resolution of 3 cm [1],[2]. This mine hunting sonar contains 120
receive elements arrayed in a band around a 21” section [1],[2].
The array configuration produces a toroidal search pattern about
the major axis of the towbody. TVSS can operate at a search
speed of up to 8 knots to provide area coverage rates approaching
6 square nautical miles per hour with a probability of detection
and classification greater than 0.85 [2].

A phase shift beamformer [7] is used for the TVSS. The beams
are narrow and each 3 degrees wide in the azimuthal and
transverse directions. The 120 beams are formed simultaneously
to provide 360 degree coverage on each ping. Each o3  beam is
formed in the radial plane by focusing one quarter of the array
(30 elements) centered about the beam origin. The beams are
defined counterclockwise with beam one pointing directly



upward toward the sea surface (assuming a stable tow platform).
Beam 1 is then formed by focusing the 30 elements, 1 through 15
and 106 through 120. Under this convention the “port side”
beam 31 (formed by focusing elements 16 through 45) and the
“starboard side” beam 91 (formed by focusing elements 76
through 105) are defined to focus directly along the channel.

4. Test Results
A search window of size 100 range cells x 4 beams was used in
the RHOC process. This accounts for approximately 3 meters
range variations in 3 consecutive pings. The original processed
TVSS beamformed data had to be converted to binary data prior
to applying the RHOC method. In the following test results, the
top pre-defined ( by top_pick ) number of peaks in each
beamformed image were retained and set to 1 while all the others
were set to zero. The three data sets used in this testing contained
five, six and ten consecutive pings of the TVSS data,
respectively. The target locations in these cases were in range cell
9119, 1693 and 2392, respectively.

Figures 2(a)-2(c) show the original beamformed image, first
order and second order RHOC results on beamformed data set 1
with top_pick=50. As can be seen, this data set is quite noisy and
the target return is not obvious in the unprocessed beamformed
images. Since it is substantially dimmer than the clutter, in the
first and second order RHOC results of Figure 2, though most of
the clutter was removed by the process, the correct target return
was not picked up. This is due to the choice of parameter top-
pick. When top_pick=50, we assume that the target return is
among the top 50 valuess. In most cases, this is true.
Nevertheless, sometimes when the raw data is too noisy like this
case, the assumption is no longer valid. To achieve better RHOC
results, one needs to increase the top_pick value. Figures 3(a)-
3(c) show the RHOC results with top_pick=100. This time one
can see that the target return was correctly picked up. Though
there are still a few clutter remained, the target becomes much
more obvious comparing with the unprocessed case.

Figures 4(a)-4(c) show the RHOC results on data set 2.
Comparing with the previous data set, the unprocessed modified
beamformed result is much cleaner. Apart from several dim
clutter, the target return is one of the most prominent returns in
the image. However, right beside the true target location, one can
clearly see another competing target-like return. It is hard to
distinguish the target return from the competing clutter. To
process this data set, top_pick=50 was first used. From the 1st

and 2nd RHOC results in Figure 4, one can see that the only
prominent return was the target return while the competing
clutter was removed. Figures 5(a)-5(c) shows the RHOC results
with top_pick=100.  In this case, apart from the correct target
return, the competing clutter was also picked up. However, one
can see that the true target return is much stronger than the
clutter. Thus, a too aggressive choice of top_pick faces the
danger of losing the real target return while a too conservative
choice degrades the ability of clutter removal. The optimal value
of top_pick may be chosen empirically.

Figure 6 and Figure 7 show the RHOC results on data set 3 with
top-pick=50 and top_pick=100, respectively. Similar to the

previous cases, there is also a competing clutter (in range cell
5000-6000). In both results, one can see that apart from the
correct target, the competing clutter was also picked up.
However, we can see that the target return is much more
prominent and more consistent.

5. Conclusion

The proposed RHOC method for post-processing of sonar data
showed the ability to remove the competing clutter and at the
same time boost the target return in several consecutive pings.
The algorithm is simple, easy to implement and fast. For
example, processing a set of 31 pings of TVSS beamformed data
took only about 18 seconds CPU time on a HP 700 series
workstation. However, from the results, we also find some
limitations of the RHOC method. Apart from the window size
which constrains the maximum deviation of the vehicle motion,
no other constraints pertaining to the dynamic information of the
vehicle, such as velocity and direction, are incorporated into the
process. For the TVSS shallow water application, if the vehicle’s
dynamic information is available, the RHOC results may be
significantly improved by building the vehicle’s motion as well
as the constraints on the target peak locations into the process.
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Figure 2. RHOC Results on Data Set 1 ( top_pick=50 ).
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Figure 3. RHOC Results on Data Set 1 ( top_pick=100 ).

Unprocessed Beamformed Results : Data Set 2 (Amplitude)
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Figure 4. RHOC Results on Data Set 2 ( top_pick=50 ).

Unprocessed Beamformed Results : Data Set 2 (Amplitude)
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Figure 5. RHOC Results on Data Set 2 ( top_pick=100 ).

Unprocessed Beamformed Results : Data Set 3 (Amplitude)
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Figure 6. RHOC Results on Data Set 3 ( top_pick=50 ).

Unprocessed Beamformed Results : Data Set 3 (Amplitude)
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Figure 7. RHOC Results on Data Set 3 ( top_pick=100 ).


