
A HIDDEN MARKOV MODEL APPROACH
TO TEXT SEGMENTATION AND EVENT TRACKING

J.P. Yamron, I. Carp, L. Gillick, S. Lowe, and P. van Mulbregt

Dragon Systems, Inc.
320 Nevada Street

Newton, MA 02160

ABSTRACT

Continuing progress in the automatic transcription of broad-
cast speech via speech recognition has raised the possibility of ap-
plying information retrieval techniques to the resulting (errorful)
text. For these techniques to be easily applicable, it is highly de-
sirable that the transcripts be segmented into stories. This paper
introduces a general methodology based on HMMs and on classi-
cal language modeling techniques for automatically inferring story
boundaries and for retrieving stories relating to a specific event. In
this preliminary work, we report some highly promising results on
accurate text. Future work will apply these techniques to errorful
transcripts.

1. INTRODUCTION

Over the last few years Dragon, like a number of other research
sites, has been developing a speech recognition system capable of
automatically transcribing broadcast speech [7]. With the recent
advances in this technology, a new source is becoming available
for information mining, in the form of a continuous stream of er-
rorful, unsegmented text. Applying standard information process-
ing techniques to this data, such as filtering or routing, requires
that this text first be segmented into topically homogeneous blocks
[1, 2, 4, 5, 6]. Unlike newswire, typical automatically transcribed
audio data contains no information (other than pauses in the audio)
about how the stream should be divided up.

Our approach to the problem of segmentation is to treat a story
as an instance of some underlying topic, and to model an unbroken
text stream as an unlabeled sequence of these topics. In this model,
finding story boundaries is equivalent to finding topic transitions.
At a certain level of abstraction, identifying topics in a text stream
is similar to recognizing speech in an acoustic stream. Each topic
block in a text stream is analogous to a phoneme in speech recog-
nition, and each word or sentence (depending on the granularity of
the segmentation) is analogous to an “acoustic frame.” Identifying
the sequence of topics in an unbroken transcript therefore corre-
sponds to recognizing phonemes in a continuous speech stream.
Just as in speech recognition, this situation is subject to analy-
sis using classic hidden Markov modeling (HMM) techniques, in
which the hidden states are topics and the observations are words
or sentences.

Given a segmentation of the text stream, it becomes possible
to apply other kinds of information processing. Here we will con-
sider the problem ofevent tracking,a variation of the filtering task
in information retrieval, in which the system is given a few ex-
amples of stories on a particular event of interest and is asked to

automatically find other examples in the text stream. While, in
the longer term, it is our intention to address the twin problems
of text segmentation and event tracking using errorful transcripts
generated by automatic speech recognition, in the present study
we focus our attention on accurate texts only.

The experiments described here on segmentation and event
tracking were carried out using the Topic Detection and Tracking
(TDT) Pilot Study Corpus, and evaluated following the procedures
set out in the TDT Evaluation Plan. Both are available through the
Linguistic Data Consortium (LDC) at the University of Pennsyl-
vania.

2. THE SEGMENTER

Suppose that there arek topicsT (1), T (2), . . . , T (k). There is a
language model associated with each topicT (i), 1 � i � k, using
which one can calculate the probability of any sequence of words.
In addition, there are transition probabilities among the topics, in-
cluding a probability for each topic to transition to itself (the “self-
loop” probability), which implicitly specifies an expected duration
for that topic. Given a text stream, a probability can be attached to
any particular hypothesis about the sequence and segmentation of
topics in the following way:

1. Transition from the start state to the first topic and accumu-
late a transition probability.

2. Stay in topic for a certain number of words or sentences,
and, given the current topic, accumulate a self-loop proba-
bility and a language model probability for each.

3. Transition to a new topic, accumulate the transition proba-
bility, and go back to step 2.

A search for the best hypothesis and corresponding segmentation
can be done using standard HMM techniques and standard speech
recognition tricks (using thresholding if the search space gets too
large, for example).

Note that this algorithm does segmentation and topic assign-
ment simultaneously. It may be the case, however, that the topics
needed by the algorithm to optimize the segmentation are not ap-
propriate or useful as identifiers for the segments. If a topic as-
signment is required in this situation, a separate identification step
using a different set of topics must be done.

2.1. Constructing the Topic Models

The topic language models used by the segmenter were built from
transcriptions of broadcast news from the period January 1992

through June 1994, part of a broadcast collection available through
the LDC. This data was filtered to remove shows not included in
the test corpus (see below), and to remove stories of fewer than
100 or more than 2,000 words. This left 15,873 stories of average
length 530 words. A global unigram model consisting of 60,000
words was built from this data.

Topic clusters were constructed by automatically clustering
the stories in the training data. This clustering was done using
a multi-passk-means algorithm that operates as follows:

� At any given point there arek clusters. For each story, de-
termine its distance to the closest cluster (based on the mea-
sure described below), and if this distance is below a thresh-
old, insert the story into the cluster and update the statistics.
If this distance is above the threshold, create a new cluster.

� Loop through the stories again, but now consider switching
each story from its present topic to the others, based on
the same measure as before. Some clusters may vanish;
additional clusters may need to be created. Repeat this step
as often as desired.

The distance measure used in the clustering is based on the Kull-
back-Leibler metric:

d =
X

n

(sn=S) log
sn=S

(cn + sn)=(C + S)
+

(cn=C) log
cn=C

(cn + sn)=(C + S)
;

wheresn andcn are the story and cluster counts for wordwn, with
S =
P

n
sn andC =

P
n
cn. The first term in this measure can

be interpreted as the distance of the story from the updated cluster,
while the second term is the distance the cluster itself moves as a
result of adding the story.

In order to prevent very common words and punctuation sym-
bols from dominating the computation, we introduced a stop list
containing 174 entries. These words did not participate in the com-
putation of the distance measure.

A topic language model was built from each cluster. To sim-
plify this task, we limited the number of clusters to 100 and chose
to model each topic using unigram statistics only. These unigram
models were smoothed versions of the raw unigram models gen-
erated from the clusters. Smoothing each model consisted of per-
forming absolute discounting followed by backoff [3] to the global
unigram model; in other words, a small fixed count (about .5) was
stolen from the non-zero raw frequencies, and the liberated counts
were redistributed to the rest of the words in the model in propor-
tion to the global unigram distribution built from the training data.
The raw cluster unigrams were quite sparse, typically containing
occurrences of only 6,000 distinct words from the training list of
60,000 words. Words on the stop list were removed from the mod-
els.

We will frequently refer to these topic language models as
background topicsor background models.

2.2. Segmentation Results

Experiments were performed on the TDT Corpus, a collection of
15,863 transcribed CNN news stories and Reuters newswire, or-
dered by date, and covering the period July 1994 through June
1995. The corpus was prepared by removing all story and para-
graph boundaries. Decoding of text was done by using a speech

recognizer with 100 underlying “single node” models (correspond-
ing to the topics), each of which was represented by a unigram
model as described above. The text was scored against these mod-
els oneframeat a time—a frame corresponding, in these exper-
iments, to a sentence. The topic-topic transition penalties were
folded into a single number, the topic-switch penalty, which was
imposed whenever the topic changed between sentences.

The topic-switch penalty was tuned to produce the correct av-
erage number of words per segment on the first 100 stories from
the test set. There are no other parameters to tune except the search
beam width, which was set large enough to avoid search errors in
our experiments.

The segmenter was first run on the TDT Corpus. The corpus
was then split into its CNN and Reuters components and the seg-
menter was run on these separately. This latter experiment was
included to test the robustness of the system to a mismatch be-
tween the training material for the background models, which was
all from CNN transcripts, and the test material.

2.2.1. TDT Corpus

On the TDT Corpus the segmenter hypothesized 16,139 segment
boundaries, compared to the 15,863 story boundaries in the test
set. Of these, 10,625 were exact matches, yielding a recall rate
(percentage of true boundaries found) of 67.0% and a precision
(percentage of hypothesized boundaries which are true) of 65.8%.
Many other hypothesized boundaries were shifted from the correct
break by only a few words; if a hypothesized boundary within 50
words (1/10 of the average story length) of a true boundary is con-
sidered a “match,” for example, the recall rate rises to 81.9% and
the precision to 80.5%.

Another measure of segmentation quality is the error metric
proposed in the TDT Evaluation Plan (a modification of a metric
proposed in [1]), which is the probability that two words separated
by distancek in the corpus are classified (as belonging to the same
story or to different stories) by the segmenter in the same way as in
the true corpus, wherek is taken to be half the average document
length in the corpus. Using this measure, the output of our seg-
menter misclassifies words 12.9% of the time on the TDT Corpus.

We did an alignment of the hypothesized and reference story
boundaries to explore the kinds of the errors made by the seg-
menter. Some of the problems that were found included:

� Failure to distinguish a boundary between successive sto-
ries because they were assigned to the same background
topic. This didn’t seem to be a large source of errors, but
the effect can be reduced by increasing the number of back-
ground models.

� Failure to accurately position boundaries relative to “broad-
cast filler”, such as, “More news after this.” This is a weak-
ness of a system that does not model story structure.

� Splitting of stories at internal topic shifts. This “problem”
actually goes to the heart of what it is we are trying to ac-
complish, and it is not clear that this is always undesirable
behavior.

� Oscillation of topic in stories not well-modeled by the back-
ground topics. This might be solved by using models with
better discrimination, such as bigram models, or models
that adaptively train so as to stay current.

2.2.2. CNN vs. Reuters

The segmenter hypothesized 8,706 boundaries on the CNN portion
of the TDT Corpus, which consisted of 7,898 stories. 4,596 were
exact matches, for a recall rate of 58.2% and a precision of 52.8%.
Note that this isworsethan for the TDT Corpus as a whole, despite
the fact that the training data was well-matched to this subcorpus.
The figures for the Reuters data are more surprising: 8,487 hy-
pothesized boundaries for 7,965 stories, of which 6,138 were exact
matches, giving a recall rate of 77.1% and a precision of 72.3%.
This is better than for the TDT Corpus as a whole, despite the
mismatch between training and test.

This result is also reflected in the computation of the segmen-
tation error metric, which yields an error rate of 16.8% on CNN
and 12.3% on Reuters.

The likely explanation of this result is that the CNN is simply
more difficult than Reuters for a content-based segmenter such as
ours. For example, written news tends to be more concise than
broadcast news, with none of the typical “fillers”, such as intro-
ductions, greetings, and sign-offs. It is also the case that the length
of CNN stories varies much more widely than Reuters stories, a
problem for our segmenter, which has a single parameter control-
ling for length.

3. THE TRACKER

The event tracker is an adaptation of the segmenter. As discussed
above, the segmentation algorithm does segmentation and topic as-
signment simultaneously. In general, the topic labels assigned by
the segmenter (which are drawn from the set of automatically de-
rived background topics) are not useful for classification, as they
are few in number and do not necessarily correspond to categories
a person would find interesting. However, by supplementing the
background topic models with a language model for a specific
event of interest, and allowing the segmenter to score segments
against this model, it becomes possible for the segmenter to out-
put a notification of an occurrence of that event in the news stream
whenever it assigns that event model’s label to a story. In this im-
plementation, the topic models have the role of determining the
background against which the event model must score sufficiently
well to be identified.

In this incarnation, the segmenter is not asked to identify story
boundaries. Its job is merely to score each story against its set of
background models, as well as against the event model, and report
the score difference between the best background model and the
event model. A threshold is applied to this difference to determine
whether a story is about the event or not, and this threshold can be
adjusted to tune the tradeoff between missing and falsely reporting
stories on the event.

Because an “event” as defined in the TDT Evaluation Plan is
expected to be something localized in time (such as a bombing or
an earthquake), we included aduration penaltyin the score of the
event model, making a story less likely to be on an event as time
goes on. The penalty was taken to be a global constant times the
number of stories in the corpus separating the current story from
the event’s last training example.

3.1. Constructing the Event Models

An event model is built fromNt training stories, whereNt may
have the values 1, 2, 4, 8, or 16. As language models, these are

extremely sparse and must be smoothed, which we do in a manner
similar to the background models:

1. Apply our stop list of 174 common words and punctuation,
so that they don’t participate in the topic determination.

2. Steal a small amount (about .5 count) from the non-zero
raw frequencies using absolute discounting.

3. Redistribute the liberated counts to the rest of the words
in the event model in proportion to their occurrence in a
backoff unigram distribution.

In this case, in order to provide a more accurate smoothing for the
event model, the backoff unigram distribution is not the one gen-
erated from the segmentation training data. Instead, we take as
the backoff distribution the mixture of the background topic mod-
els that best approximates the unsmoothed event model. There is
therefore a different backoff model for every event and every value
of Nt.

To construct these backoff models we proceed as follows. If
we refer to the probability of wordwn in the unsmoothed event
model asen, and its probability in the topic modelT (i) asT (i)

n

(there are 100 topic models, so1 � i � 100), then its probability
in the backoff distributionp(e)n is defined to be:

p(e)n =
X

i

�(i)T (i)
n :

The �(i) are mixture coefficients,which sum to one. The best
choice for the�(i) is the one that makes the distributionp(e) “clos-
est” to the unsmoothed distributione, which we define by maxi-
mizing the probability thatp(e) generates the training stories that
make upe. This maximization leads via the EM algorithm to an
iterative solution for the�(i):

�(i) =
X

n

en
�(i)T

(i)
nP

j
�(j)T

(j)
n

:

For each event andNt value, therefore, we compute a distribution
p(e) by solving the above equation, plugp(e) into step 3 above as
the backoff model, and generate a smoothed event model for use
in the tracker.

3.2. Tracking Results

About 8% of the stories in the TDT Corpus are labeled from a set
of 25 events that occurred in the July 1994 through June 1995 time-
frame (examples include Bobby Wayne Hall’s helicopter crash and
the Oklahoma City bombing). The number of stories assigned to a
particular event varied from 2 to 273, with an average of about 50
per event. These were the events used in the tracking experiments.

The tracking results comprise a large number of experiments,
each performed as follows:

1. Choose an eventE and a number of training examplesNt

(Nt is taken to be either 1, 2, 4, 8, or 16).

2. Find theN th
t story labeled as eventE in the corpus.

3. Train a language model for eventE (as described above)
from all stories with labelE prior to and including the story
identified in step 2.

4. Run the tracker on all stories after the16th story labeled
with eventE. (Testing on all stories after the16th labeled
story makes the test set the same for all values ofNt.)

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
P

ro
ba

bi
lit

y
(in

 %
)

False Alarm Probability (in %)

Nt = 1
Nt = 2
Nt = 4
Nt = 8

Nt = 16

Figure 1: Tracking performance for different values ofNt, with
duration penalty.

This procedure was repeated for all possible values ofE andNt.
The only tunable parameters in this system are the duration

constant and the threshold on the event-background score differ-
ence. As we are still exploring the limits of this technology, we
did not try to set eithera priori; instead, the duration constant was
tuned on the test set to optimize performance, and the threshold
was varied to produce full plots of missvs.false alarm.

Figure 1 shows the results of our tracking experiments for each
value ofNt, averaged over all events. Our tracker is clearly very
sensitive to the number of training examples, performing poorly
for Nt = 1 but quite well forNt = 16. This indicates that the
smoothing methods we are using are not effective on extremely
sparse data (one story) but do improve quickly as the amount of
data increases.

The system gives its optimum performance at very low miss
rates, indicating that as the score threshold drops, the language
models are doing a good job of distinguishing the target stories
from the rest and keeping the false alarm rate low. On the other
hand, the miss rate increases fairly rapidly as the score threshold
increases and the false alarm rate drops, a sign that the density of
on-target stories among the best-scoring is not as high as it should
be. This suggests that the language models are getting fooled by
stories that score well but are actually off-target. A more discrim-
inating language model, such as a bigram model, might help here.

4. THE FUTURE

It is remarkable that this simple application of HMM techniques to
segmentation and tracking achieves such promising results. This
work represents just the beginning of what can be achieved with
this approach; many improvements are possible, both by incorpo-
rating ideas found in other work and from generalizations of the
techniques we have already employed.

In particular, some form of story modeling that attempts to
recognize features around boundaries (a key aspect of the approach
in [1], for example), should be incorporated into our framework.

One way to do this, which continues in the spirit of the speech
recognition analogy, is to use “multi-node” story models, in which
a story is modeled as a sequence of nodes (for example, one node
which models the story start, one which models the middle, and
one which models the end) rather than a single node corresponding
to the topic.

It is also possible to improve the topic modeling that already
forms the basis of the segmenter. Some methods of achieving this
include using bigram models in place of unigram models for top-
ics, and adaptively training the background during segmentation.

One key to improving performance on the event tracking task
is better smoothing of the event models. For this, we are looking at
ideas from information retrieval, such as using a retrieval engine to
find smoothing material for a story from a database formed from
the training data. Given that our performance improves rapidly
with more training examples, this might dramatically improve the
behavior of the system for small values ofNt. In general, we
believe that this task requires a smoothing algorithm that aggres-
sively preserves topic, something that is more suited to information
retrieval techniques.

Dragon looks forward to implementing these ideas in a future
system.

5. REFERENCES

[1] D. Beeferman, A. Berger, and J. Lafferty, “Text segmenta-
tion using exponential models,” inProceedings of the Sec-
ond Conference on Empirical Methods in Natural Language
Processing,Providence, RI, 1997.

[2] M.A. Hearst, “Multi-paragraph Segmentation of Expository
Text,” in Proceedings of the ACL,1994.

[3] S. Katz, “Estimation of probabilities from sparse data for the
language model component of a speech recognizer,” inIEEE
Transactions on Acoustics, Speech and Signal Processing,
ASSP-35(3):400–401, March, 1987.

[4] H. Kozima, “Text Segmentation Based on Similarity between
Words,” inProceedings of the ACL,1993.

[5] D.J. Litman and R.J. Passonneau, “Combining Multiple
Knowledge Sources for Discourse Segmentation,” inPro-
ceedings of the ACL,1995.

[6] J.M. Ponte and W.B. Croft, “Text Segmentation by Topic,” in
Proceedings of the First European Conference on Research
and Advanced Technology for Digitial Libraries,pp. 120–
129, 1997.

[7] S. Wegmann, L. Gillick, J. Orloff, B. Peskin, R. Roth, P.
van Mulbregt, and D. Wald, “Marketplace Recognition Us-
ing Dragon’s Continuous Speech Recognition System,”Pro-
ceedings of the DARPA Speech Recognition Workshop,Har-
riman, NY, February 1996.

