
JUST-IN-TIME LANGUAGE MODELLING

Adam Berger and Robert Miller

School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213
aberger,rcm@cs.cmu.edu

ABSTRACT

Traditional approaches to language modelling have relied on a
fixed corpus of text to inform the parameters of a probability distri-
bution over word sequences. Increasing the corpus size often leads
to better-performing language models, but no matter how large,
the corpus is a static entity, unable to reflect information about
events which postdate it. In these pages we introduce an online
paradigm which interleaves the estimation and application of a lan-
guage model. We present a Bayesian approach to online language
modelling, in which the marginal probabilities of a static trigram
model are dynamically updated to match the topic being dictated
to the system. We also describe the architecture of a prototype we
have implemented which uses the World Wide Web (WWW) as a
source of information, and provide results from some initial proof
of concept experiments.

1. BACKGROUND

Of pressing concern to language modelling researchers is how to
detect and account for a “non-stationary” source; that is, a source
of words whose distribution changes over time. To take a concrete
example, suppose we put an ASR system to the task of transcrib-
ing the evening news (to automatically generate a transcript for
the hearing-impaired, say). The anchor may begin with a segment
on Bosnia, in which words such asstrife , famine , Serbs ,
Albright andU.N. are more probable than in general. Then
the anchor moves to a story on the Iditarod dog sled race in Alaska,
during which time the wordssnow, mush, cold andcanine
are more likely than in general. Adaptive language modelling ad-
dresses the task of ensuring that a model keeps up with a changing
source distribution. In short: as the topic changes, so should the
model.

One approach has been to partition the training corpus into a
number of topics—a coarse division might be sports, politics and
useless banter—and train individual models on each topic. When
applying this composite model, one needs somehow to detect the
topic at hand and select the model appropriate to the topic. A
somewhat more refined approach is to allow a few topics to be
active at once, and apply a weighted average of the individual topic
models [1].

These approaches rely on a training corpus fixed “offline,”
prior to applying the model. Such an approach works well when
the topic at hand is to be found in the training corpus, but not when

Adam Berger is partially supported by an IBM Cooperative Fellow-
ship. Robert Miller is partially supported by an NDSEG Fellowship.

ASR system
Hypothesized

utterance
Update corpus CU

Spoken
input

Query

Text

Dynamic
language model

λλ, S

Update
algorithm

 Text source
(WWW)

Query
engine

Updated λ

Text output

Figure 1: ASR system using just-in-time language modelling.

the topic is absent from the corpus. This is not a problem that can
be fixed with Moore’s law and patience: nearly any source distri-
bution which an ASR system is going to encounter will change as
events occur in the world. No speech recognition system trained
on data prior to 1993, for example, could possibly recognize that
Marlins andbaseball have a strong lexical correlation.

This document describes a language modelling system in which
the estimation and application of the model are coupled; that is, a
model which learns as it works. We envision the behavior of an
ASR system incorporating this language model as follows (Figure
1). In processing a single utterance, the system uses the current
language model to generate a hypothesis for the utterance. The
hypothesis is then (while the system awaits the next utterance, say)
sent to a query engine, which generates an update corpus based on
using the hypothesis as a set of keywords in a search. The lan-
guage model is reestimated to take into account the update corpus,
and can be applied either to rescore the current utterance, or just to
process the next utterance.

2. AN ONLINE MODEL OF LANGUAGE

Given is some stationary distribution (ourdefault model) S. We
imagineS to be a trigram or similar conventional language model1,
whose parameters have been estimated offline on a large corpus of
textCS . The system is occasionally provided with an “update cor-
pus” of textCU which (one hopes) has a high semantic correlation
with the current topic of dictation, but which is likely to be much
smaller—by several orders of magnitude—thanCS .

How one generates such a corpus is taken up in the follow-
ing section. Our concern here is to construct a language model
� which incorporates knowledge gleaned fromCU into S. Some
desired properties of�:

1We make no explicit assumptions about the form ofS in what follows,
though the prototype described later uses the trigram model of [2]

(1) The influence which the update corpusCU plays should
increase with its size (number of words)NU . That is, as
its size increases, we should considerCU a more reliable
source of information, and pay it greater heed.

(2) But how much greater heed? There should be a “knob” to
adjust how much we adjustS as a function of the size of
the update corpus.

We’ll consider language models in the exponential family

F � f� : p(yjx; �) = 1

Z�(x)
e�ys(yjx)g (1)

where

� s(yjx) is the probability (value) which the static modelS
assigns to the event that wordy follows the sequence of
wordsx;

� � = f�1; �2; : : :g is a set of real-valued parameters, one for
each word. Roughly speaking,�y represents an adjustment
to the marginal probability of wordy in S. In other words,
wordy is on average aboute�y more probable according to
� than according toS.

� Z�(x) is a normalization term, ensuring
P

y
p(yjx; �) =

1.

One member ofF is of particular interest, namely the model
with � = f0; 0; 0 : : :g, which we’ll write as�0. This is just an-
other way of writingS, the static distribution.

If the event(x; y) (the wordy following the wordsx) occurs
cu(x; y) times in a corpus of text which we denote byCU , then
the probability which the model� assigns toCU (the “likelihood”
of CU) is

p(CU j�) =
Y
x;y

�
e�ys(yjx)P
y
e�ys(yjx)

�cu(x; y)
(2)

We will also require a probability distribution over models
� 2 F , for which we adopt a Gaussian:

p(�) =
1p
2��2

Y
y

exp

�
��y

2

2�2

�
(3)

A Gaussian prior of the form (3) imposes a “smoothness con-
straint,” penalizing models by the amount they diverge from the
default distributionS. A justification for this approach comes
from Occam’s Razor, which, in this context, prefers the smoothest
among competing models of the dataCU .

One can think of�2, the real-valued parameter in (3), as a
degree of trust in the update corpus. As�2 decreases, thea priori
probability of a model with large parameters�y decreases. That
is, the prior distribution of models becomes peaked around�0,
the model withnoadjustments in marginal probabilities. Thus�2

seems to satisfy the second of our desiderata.

The MAP-optimal model

Given a sampling distribution (2) and a prior distribution (3), we
are now in a position to introduce the posterior distribution. For a
particular update corpusCU , defineQ(�), thequality (or posterior
probability) of model�, as

Q(�) � p(�jCU) (4)

Q(�) ranks candidate models by how likely they are, in light of the
update corpusCU . The optimal model�?—the one with the high-
est score—is written�? � argmax�p(�jCU). Applying Bayes’
law,

�? = argmax
�

p(CU j�)p(�)
p(CU)

= argmax
�
p(CU j�)p(�) (5)

We can drop off the denominator in the last equality sinceCU is
independent of�.

Notice that in the case of a uniform priorp(�), the optimiza-
tion problem posed by (5) reduces tomaximum-likelihood: find
that� which assigns maximal probability to the dataCU .

It has been recognized for some time in the computer vision
community [3] that this type of Bayesian approach can be viewed
as an instance ofregularization, a popular method for solvingill-
posed optimization problems. Given a set of data and a family of
candidate models which account for the data, regularization pre-
scribes that the optimal model�? maximize

F (�) = D(�) + �T (�)

whereD(�) measures how well� accounts for the data,T (�)
measures the smoothness of the model�, and� is a real-valued
parameter which governs the tradeoff between these two objec-
tives.

F (�) may reasonably be viewed as a fitness functional over
conditional probability distributions. In this setting, it can be writ-
ten as2:

F (�) � log p(CU j�) + log p(�)

=
X
x;y

cu(x; y) log p(yjx; �)
| {z }

D(�)

� 1

2�2|{z}
�

X
y

�y
2

| {z }
T (�)

+K

The constant� = 1
2�2

is a hyperparameter, trading off between
well-fitted (�2 large) and smooth (�2 small) distributions. Substi-
tuting (2) and (3) into (5),

Q(�) =
1p
2��2

Y
y

exp

�
��y

2

2�2

�Y
x;y

�
e�y s(yjx)P
y
e�ys(yjx)

�cu(x; y)

It is a straightforward exercise in calculus to derive the con-
dition for �?y , the optimal value of�y (Space precludes a more
thorough treatment here, but details are available in [4]):

�?y
NU�2

+ pu(y)�
X
x

pu(x)p(yjx; �) = 0 (6)

wherepu(x; y) � cu(x; y)=NU .
Some observations about (6):

� As NU gets small,�?y tends to zero. This is just what one
would hope and expect: as the size of the update corpus
shrinks, the optimal update to the marginal probability of
y should vanish. The same occurs in the case of small�2,
which is like saying that we don’t trust the update corpus.

� Conversely, asNU or �2 gets large, (6) becomespu(y) =P
x

pu(x)p(yjx; �). In other words, adjust�?y so that the
marginal probability ofy in the model� exactly matches
its marginal probability in theupdate corpus.

2Here and elsewhere, K means “constant with respect to the variable(s)
of interest,” in this case�y .

Iterative scaling

We now discuss how to compute, given an update corpusCU and
a value for�2, the optimal model�?. This approach derives from
theiterative scalingalgorithm, a method for finding the maximum-
likelihood�? (i.e. in the case of a uniform prior). There are some
technical issues to contend with when the optimal setting for�y
is non-finite; these and other aspects of the iterative scaling are
addressed in [5].

In seeking�?, it helps to recast the problem to a slightly dif-
ferent form. Starting from some model�, we seek the optimal
change�y to each parameter�y. We denote the vector of (ad-
ditive) changes by�. Applying an auxiliary function argument
common in such settings, we instead maximize a functionA(�) �
Q(�+�)�Q(�), whose derivative is given by

@A(�)

@�y

=
�y +�y

NU�2
� pu(y) +

X
x

pu(x)p(yjx; �)e�y (7)

Finding the optimal�y is a matter of setting this expression to
zero for eachy and solving for�y. As a sanity check, notice that

� AsNU gets large, (7) turns into a linear version (linear since
the constraints are non-overlapping) of the standard itera-
tive scaling equation: the prior term drops out andCU fully
dictates the update�y. The same thing happens as�2 gets
large, meaning that we place no weight on the prior model
S.

� AsNU or �2 gets small, (7) turns into
�y +�y

NU�
2 = 0; that

is, �y = ��y. So as the update corpus shrinks, the opti-
mal choice of�y is the one which exactly cancels out any
change we’ve made to the static modelS.

Efficient scoring

Members of the exponential familyF , as specified in (1), have a
practical deficiency: calculating the probability which a particular
� 2 F assigns to the event(y; x) involves a sum, in the partition
functionZ�(x), over all possible wordsy:

Z�(x) =
X
y

e�y s(yjx) (8)

A considerable speedup in evaluating (8) can be realized by the
following heuristic. If the wordy does not appear (or appears very
rarely) in the update corpusCU , then fix�y = 0, on the grounds
that we have insufficient evidence to alter the static marginal prob-
ability of y. This assumption is clearly false, since the absence of
y is informative in itself. The assumption also violates (7), which
dictates that, if�y = 0 andpu(y) = 0, then

�y

NU�2
+
X
x

pu(x)p(yjx; �)e�y = 0

So�y 6= 0 in general, even if its empirical count is zero. In fact,
the appropriate setting of�y is negative in this case. However, by
applying this heuristic, we can realize a savings as follows. Denot-
ing byY the setfyjy 2 CUg and byY the complement of this set,
we can rewrite (8) as

Z�(x) =
X
y2Y

e�ys(yjx) +
X
y2Y

s(yjx)

= 1 +
X
y2Y

(e�y � 1)s(yjx)

So we’ve reduced the sum over all words to a sum over just those
words which appeared in the corpusCU , which can amount to a
significant computational savings.

3. SYSTEM ARCHITECTURE

We have left much unsaid regarding the implementation of a dy-
namic language model. Here we describe some of the details of
one particular implementation; the following section summarizes
performance results of the system.

Our system operates in both ’sequential’ and ’rescoring’ modes.
Sequential mode, designed for measuring the perplexity of text, as-
signs a probability (a score) to the input sentence by relying solely
on the current language model. The input sentence is also used to
generate an update corpusCU , from which the current language
model is updated via the methods described in the previous sec-
tion. The updated model is then ready to be applied to the next
sentence. The sequential method benefits from and in fact relies
upon some topical coherence from one sentence to the next.

’Rescoring’ mode is designed for measuring word error rate of
a speech (audio) signal. From an input utterance, an ASR system,
equipped with a trigram language model, produces a hypothesized
utterance, which is used to generate an update corpusCU . From
CU we can construct an updated language model, which is applied
to generate a refined hypothesis of the input utterance. Unlike the
’sequential’ approach, rescoring is an iterative procedure, though
in practice we iterate only once in generating a final hypothesis.

Descending one level of abstraction, we now describe the be-
havior of the query engine, whose task is to generate an update
corpus from a query. As depicted in figure 2, the query engine
first filters noise words from the query, and then passes the query
to a Web search engine. We experimented with two search en-
gines: AltaVista[6], which indexes over100 million Web pages
of all kinds; and News Index[7], which indexes about200 online
news sources but revisits them frequently. Web pages found by the
search engine are fetched in order of relevance in a multithreaded
manner, stripped of HTML formatting tags, and added to the up-
date corpus until it reaches the desired size. An update corpus
of 10; 000 words typically contains about twenty Web pages and
takes about three minutes to generate. These web pages comprise
the update corpusCU , from which the techniques described in the
previous section generate a new model�0, ready for use in decod-
ing the next utterance.

4. EVALUATION

This section describes a set of experiments designed to gauge the
ability of adynamic language modelling system to reduce perplex-
ity.

Table 1 summarizes the perplexity of three different newswire
texts using a sequential approach. The table also demonstrates that

Search engine
(AltaVista)

Text
normalization Threads

Hypothesized
utterance URLs

Web pagesUpdate corpus

 World Wide
Web

Stopword
filter

Query

Figure 2: Query engine generating an update corpus from the Web.

IRS China Marathon
Static trigram model 313 781 1060
Dynamic (using AltaVista) 315 781 1038
Dynamic (using News Index) 298 704 1016

Table 1: Perplexity of three AP newswire stories of 11/1/97—
on IRS reform, US-Chinese relations, and the New York City
Marathon—using a static and dynamic model.

320

330

340

350

360

370

380

0.001 0.01 0.1 1 10 100

P
P

variance

just in time LM
baseline LM

Figure 3: Observed dependenceof perplexity of a segment of brod-
cast news data on the value of�2.

News Index—which, being a news-only index has a higher “signal
to noise” ratio than AltaVista—is the better source, and thus we
employ it exclusively in subsequent experiments.

Prior to generating any results, we applied binary search to
discover the maximum-likelihood value of�2 for a heldout text
corpus. Figure 3 depicts the observed dependence of�2 on the
perplexity of an excerpt of broadcast news data taken from a the
Hub4 evaluation set. Here we used the News Index source and
the rescoring decoding approach. (It makes little sense to report
perplexities in rescoring mode, but figure 3’s interest lies only in
the quality of the resulting system as a function of�2). Based
on figure 3, the value of�2 was fixed at0:8 for the experiments
reported in table 1.

5. CONCLUSION

We have presented a Bayesian framework for dynamic language
modelling, and discussed one particular implementation of a dy-
namic language modelling system. Though the described system
is not today suitable for a real-time ASR system given the latency
of the web, a nominally altered architecture—fetching an update
corpus in the background after every few sentences, say, or even
relying on a local information source (presumably of narrower ex-
tent than the WWW)—could make use of the approach described
herein.

Considering that no effort was expended on trying to coax
“relevant” queries from the search engine by judicious selection
of keywords from the query, we consider the performance of our
prototype encouraging. We are pursuing more refined approaches
to generating an update corpus, and plan to incorporate the system
into the CMU Sphinx [8] speech recognition system to determine
what effect this approach can have on word error rate.

Acknowledgments

The authors thank John Lafferty and Stanley Chen for technical
guidance.

6. REFERENCES

[1] K. Seymore and R. Rosenfeld (1997). Using story topics for
language model adaptation.Eurospeech ’97

[2] P. Clarkson and R. Rosenfeld (1997) Statistical lan-
guage modeling using the CMU-Cambridge toolkit.Eu-
rospeech ’97

[3] R. Szeliski (1989)Bayesian modelling of uncertainty in low
level vision. Boston: Kluwer Academic Publishers.

[4] A. Berger and R. Miller (1998). A real-time system for lan-
guage modelling. CMU CS Department Technical Report.
(Forthcoming).

[5] S. Della Pietra, V. Della Pietra and J. Lafferty (1997) Induc-
ing features of random fields.IEEE Transactions on Pattern
Analysis and Machine Intelligence:19(4), 380–393.

[6] DEC, AltaVista.http://altavista.digital.com .

[7] News Index.http://www.newsindex.com .

[8] K.F. Lee, H.W. Hon and R. Reddy (1990) An overview of the
SPHINX speech recognition system.Journal of Acoustics,
Speech, and Signal Processing: 38:1.

