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ABSTRACT

For cellular software radio receivers, this paper presents a
computationally efficient algorithm for extracting individ-
ual radio channels from the output of the wideband A/D
converter. In a software radio, the extraction of individual
channels from the output of the wideband A/D converter is
by far the most computationally demanding task; hence, it
is very important to devise computationally efficient algo-
rithms for this task. Our algorithm is obtained by modify-
ing the DFT filter bank structure that is well known in the
multi-rate signal processing literature [8, 5]. We show that
the complexity of the proposed algorithm is significantly less
(2X-50X) than the complexity of the conventional channel-
izers.

1. INTRODUCTION

Software radios can significantly reduce the cost and com-
plexity of today’s cellular radio base stations. Software ra-
dios architectures center on the use of wideband A/D con-
verters and D/A converters as close to the antenna as pos-
sible , with as much radio functionality as possible imple-
mented in the digital domain [1]. For cellular software radio
receivers, this paper presents a computationally efficient al-
gorithm for extracting individual radio channels from the
output of the wideband A/D converter.

Currently, each cellular radio base station contains 20 or
more narrowband receivers, and each of these receivers has
its own set of analog mixers, local oscillators, analog filters,
analog to digital converters (ADC), and baseband process-
ing unit. The cost of today’s radio base station receivers is a
linear function of the number of received channels, and this
cost is dominated by the cost of the analog components. In
a radio base station with a software radio receiver, a single
analog front end can be used to receive all channels; hence,
the cost of the analog part of the resulting receiver is a
constant function of the number of received channels.

The analog front end of a software radio receiver con-
tains a wideband ADC for digitizing the entire frequency
band allocated to the cellular radio base station. The out-
put of this ADC goes to the IF processing block which con-
tains a bank of digital bandpass filters for extracting in-
dividual radio channels from the output of the ADC (e.g.
30KHz channel in IS-54 standard [2]).

Practical cellular radio base stations require that wide-
band receivers be efficient in their use of resources such
as power, hardware cost, and computational resources. In
a wideband radio receiver, the IF processing block is by
far the most computationally demanding block; since, this

block operates at the highest sampling rate [1]. Computa-
tionally efficient algorithms for the implementation of the
IF processing block are essential for widespread deployment
of software radios. Digital down-converter chips dedicated
to extraction of one radio channel are currently available
[3, 4]; however, the complexity of the digital part of the
resulting receiver is still a linear function of the number of
received channels .

A computationally efficient structure, the filter bank
channelizer, for implementing the IF processing block is pre-
sented in this paper. Complexity of this structure is a con-
stant function of the number of received channels. Specif-
ically, the complexity of this structure is approximately
twice the complexity of implementing a digital bandpass
filter that extracts only one radio channel from the output
of the ADC. If the radio base station conforms to a regular
frequency reuse pattern, the complexity of the filter bank
channelizer can be further reduced (by a factor of 2) result-
ing in what we call the subsampled filter bank channelizer.
Expressions for the exact complexity of the filter bank chan-
nelizer, in terms of number of real multiplications/second,
are presented.

2. CHANNELIZERS

A generic wideband receiver is depicted in Fig. 1. In this
receiver, the entire frequency band of interest (e.g. 10MHz)
is digitized using a pair of wideband ADCs. In the wideband
receiver of Fig. 1, the final frequency/channel selection is
performed digitally by the block labeled “Digital Channel-
izer” whose input x[n] is the complex-valued output of the
ADCs. Each output of the channelizer is fed to a baseband
processing block. The channelizer performs bandpass filter-
ing followed by sample rate reduction from the very high
sampling rate of the ADCs to the relatively low sampling
rate expected by the baseband processing units.

Discrete channelizers and filter bank channelizers are
the two most commonly proposed structures for implement-
ing the channelizer. A discrete channelizer with M received
channels essentially consists of M narrowband digital filters
running in parallel; hence, this channelizer is the digital
equivalent of implementing M narrowband analog receivers
in parallel. More importantly, the complexity of a discrete
channelizer is a linear function of the number of received
channels [3].



2.1. Filter Bank Channelizers

An alternative to the discrete channelizer is a filter bank
channelizer. Using multi-rate signal processing concepts,
the filter bank channelizer can extract every channel be-
tween [−−Fs

2
, Fs

2
], where Fs is the sampling frequency of

the wideband ADCs. Using the fast Fourier transform, com-
putationally efficient algorithms for implementing the filter
bank channelizer have been developed [5]. The complexity
of a filter bank channelizer is a constant function of the
number of received channels; hence, when a large number
of channels are needed in a receiver, the filter bank chan-
nelizer can be a very computationally attractive choice. In
this paper we focus on the design and analysis of filter bank
channelizer for wideband receivers.

Functionally, the channelizer is a bank of digital, complex-
valued, bandpass filters where the output of each filter is
followed by a mixer and downsampler (see Fig. 2). In Fig.
2, each bandpass filter, Hi(w), is centered around the car-
rier frequency of a particular radio channel. Each mixer in
the channelizer converts the bandpass output of the corre-
sponding filter to a baseband signal. Since the bandwidth
of the output of each filter is much less than the bandwidth
of x[n], it is logical to decimate the output of each filter by
N .

2.2. Classical Filter Bank Channelizer

Provided that Hi(z)’s satisfy certain conditions, an FFT
can be used to implement the channelizer of Fig. 2 effi-
ciently. This implementation is presented in this section.
In the next section, we show how the complexity of this
channelizer can be further reduced by taking advantage of
the frequency reuse pattern commonly used in cellular net-
works.

Let H0(z) be a real, causal, lowpass filter with finite im-
pulse response h0[n]. Assume there are M equally spaced
channels between [−Fs

2
, +Fs

2
], and let fcs denote the fre-

quency separation between any two consecutive channels,
i.e.

Fs = M × fcs . (1)

Furthermore, assume that each bandpass filter in the filter
bank channelizer , Hi(z), is a modulated version of H0(z),
i.e.

Hi(w) = H0(w − 2π

M
i) 0 ≤ i ≤ M − 1. (2)

Note that the center frequency of the i− th filter, Hi(z), is
2π
M

i (Fs
M

i in continuous time). In Fig. 2, the single input/M -

output system with input x[n] and outputs {ci[n]}M−1
i=0 is

called a DFT filter bank [5]. Finally, assume that M is an
integer multiple of the downsampling factor, N , i.e.

M = K × N for some integer K. (3)

If conditions (1) and (3) are satisfied, polyphase decompo-
sition of H0(z) can be used to implement this DFT filter
bank efficiently [5]. To this end, express H0(z) in polyphase
form as:

H0(z) =

M−1∑

l=0

z−lEl(z
M ), (4)

where

el(n) = h0(nM + l) 0 ≤ l ≤ M − 1, (5)

and El(z) is the z-transform of el(n). Using the polyphase
filters El(z), it can be shown [5] that the structure in Fig.
3 is equivalent to the filter bank channelizer of Fig. 2 as
long as constraint (1) and (3) are met.

The complexity of the channelizer in Fig. 3 is dominated
by the complexity of the M -point IDFT. Note that Fig. 3,
an M -point IDFT is performed every N

Fs
seconds. Next,

we show that this M -point IDFT can be replaced with an
M
L

-point IDFT, where L is the frequency reuse factor of the
cellular system.

2.3. Subsampled Filter Bank Channelizer

Most radio base stations conform to some sort of frequency
reuse pattern which restricts the set of channels received by
the base station [6]. For example, with a 7/21 frequency
reuse pattern, each base station only receives every 7-th
radio channel; hence, only every 7-th channel needs to be
extracted by the filter bank channelizer. More generally,
assume that the filter bank channelizer needs to extract
only every L-th channel between [−Fs

2
, +Fs

2
]. In this case,

we show that the M -point IDFT in the opened filter bank
channelizer of Fig. 3 can be replaced with an M

L
-point

IDFT resulting in a channelizer with lower overall complex-
ity. Naturally, for an M

L
-point IDFT to be defined, M must

be an integer multiple of M , i.e.

M = Q × L for some integer Q. (6)

Referring to Fig. 3, if only every L-th output channel
is needed, we will only need to compute

{riL(n)}Q−1
i=0 = {r0(n), rL(n), r2L(n), r3L(n), . . . , rM−L(n)} .

(7)

Since {ri(n)}M−1
i=0 are the IDFT coefficients of {si(n)}M−1

i=0 ,
the sequence in equation (7) is obtained by subsampling,

by a factor of L, the IDFT coefficients {ri(n)}M−1
i=0 . The

subsampled IDFT coefficients in (7) can be computed by
taking a Q-point IDFT instead of an M -point IDFT. The
key step is to form a Q-point sequence {zi(n)}Q−1

i=0 , from

the M -point sequence {si(n)}M−1
i=0 , in such a way that the

Q-point IDFT of {zi(n)}Q−1
i=0 is the sequence in (7).

The desired sequence {zi(n)}Q−1
i=0 is obtained [7] from

{si(n)}M−1
i=0 according to

zi(n) =

L−1∑

r=0

si+Qr(n) 0 ≤ i ≤ Q − 1. (8)

The sequence {zi(n)}Q−1
i=0 is typically referred to as the

“time-aliased” version of si(n) [7]. The block diagram of
the resulting subsampled DFT filter bank is depicted in
Fig. 4. A simple way to visualize the construction of the
sequence {zi(n)}Q−1

i=0 from the sequence {si(n)}M−1
i=0 is to

think of {si(n)}M−1
i=0 as a vector of length M , and break this

vector into L vectors of length Q. The vector {zi(n)}Q−1
i=0

is the vector sum of these L vectors (each of length Q).



To be able to use a filter bank channelizer with reduced
size IDFT, restrictions (1), (3), and (6) must be met. Com-
bining these restrictions, we see that Fs must be divisible
by fcs, by N , and by L. The smallest Fs that satisfies
these three conditions is the Least Common Multiple of
(fcs, N, L), denoted by LCM(fcs, N, L).

Example: Let us consider the IS-54 cellular system [2]
which uses a 7/21 frequency reuse pattern, i.e. L=7. Recall
that the channel spacing for IS-54 is fcs = 30KHz. Con-
sidering restrictions (1) and (6), we see that Fs must be
divisible by LCM(L, fcs) = LCM(7, 30 × 103) = 210KHz.
To digitize the entire cellular band, approximately 10MHz
wide, Fs can be chosen to be 26.88MHz corresponding to
M = 896. The down sampling factor can then be chosen as
N = 224. The size of the IDFT in the classical filter bank
channelizer of Fig. 3 will be 896, and the size of the IDFT
in the subsampled filter bank channelizer of Fig. 4 will be
128; since, Q = M

L
= 128. The sampling frequency of the

output of the decimators in this case will be Fs
N

= 120KHz,
i.e. exactly four times the channel spacing frequency.

2.4. Complexity of Filter Bank Channelizers

The complexity of the classical filter bank channelizer and
the complexity of the subsampled filter bank channelizer
are compared next. For each ’n’, we need to compute
{si[n]}M−1

i=0 , and we need to compute an M -point IDFT

or an M
L

-point IDFT. Let Ψ(P ) denote the number of real

multiplications needed to compute {si[n]}M−1
i=0 for each ’n’,

where P is the number of real non-zero coefficients of the
lowpass filter prototype h0[n]. Similarly, let Φ(X) denote
the number of real multiplications needed to implement an
X-point IDFT. Since x[n] is complex-valued, and each ei(n)
is real-valued:

Ψ(P ) = 2 × P. (9)

Noting that these computations need to be repeated every
N
Fs

seconds, we see that the total number of real multipli-

cations/second for the classical filter bank channelizer with
a full-size IDFT is

µ(M, P ) = [Ψ(P ) + Φ(M)] × Fs

N
. (10)

The total number of multiplications/second for a subsam-
pled filter bank channelizer that extracts every L-th chan-
nels is

µ(M, P, L) = [Ψ(P ) + Φ(
M

L
)] × Fs

N
. (11)

Equation (10) implies that the complexity of a filter bank
channelizer is equal to sum of the complexity of one low-
pass digital filter and the complexity of one M -point IDFT;
hence, at an additional cost of one M -point IDFT, the
opened filter bank channelizer can extract every radio chan-
nel between [−Fs

2
, Fs

2
]. The subsampled filter bank chan-

nelizer extracts every L-th radio channel at the additional
cost of one M

L
-point IDFT. Since computationally efficient

algorithm for implementing the IDFT exist, i.e. FFT al-
gorithms, this additional complexity due to the IDFT can
be quite low. Most importantly, complexity of a filter bank
channelizer is always a constant function of the number of
received channels.

Example: Let us again consider the IS-54 case with
Fs = 26.88MHz, N = 224, and M = 896. Considering
typical numbers for the peak passband ripple and peak stop-
band ripple for the lowpass prototype filter would indicate
that the order of this lowpass filter is at least 1450.

Assuming that the order of the lowpass prototype filter
is P=1450, the complexity of a filter bank channelizer with
a full-size IDFT (i.e. 896-pt IDFT) will be, using equa-
tion (10), 826× 106 real multiplications/second. A Cooley-
Tuckey FFT algorithm is assumed for efficiently computing
the 896-pt IDFT. For the same example, let us consider a
system in which only every 7-th channel is needed, i.e. L=7.
In this case, the size of the IDFT will be 128 = 896

7
. The

complexity of a subsampled filter bank channelizer with this
reduced-size IDFT will be , using equation (11), 410 × 106

real multiplications/second.
For this example, Fig. 5 depicts the complexity of var-

ious channelizers as a function of the number of extracted
channels. The discrete channelizer in Fig. 5 refers to a
channelizer that uses separate digital bandpass filters to
extract each radio channel [3]. The complexity of each of
these bandpass filters is the same as the complexity of the
lowpass prototype filter in the filter bank channelizer, i.e.
the complexity of h0(n). From Fig. 5, we see that if two
or more channels need to be extracted, it is more efficient
to use a filter bank channelizer that extracts every chan-
nel than to use two or more digital filters to extract these
channels individually.

3. SUMMARY

For a cellular software radio receiver, a computationally
efficient channelizer that extracts individual radio channels
from the output of the wideband ADC was presented in this
paper. This channelizer is closely related to the DFT filter
bank used in transmultiplexers [8]. If the cellular system
conforms to a regular frequency reuse pattern, a subsam-
pled DFT filter bank channelizer can be used instead of the
classical DFT filter bank channelizer resulting in a factor of
2 reduction in the complexity of the channelizer.
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Figure 4: Subsampled Filter Bank Channelizer.
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