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ABSTRACT

We present a computationally efficient method of sepa-
rating mixed speech signals. The method uses a recursive
adaptive gradient descent technique with the cost function
designed to maximize the kurtosis of the output (separated)
signals. The choice of kurtosis maximization as an objec-
tive function (which acts as a measure of separation) is
supported by experiments with a number of speech signals
as well as spherically invariant random processes (SIRP’s)
which are regarded as excellent statistical models for speech.
Development and analysis of the adaptive algorithm is pre-
sented. Simulation examples using actual voice signals are
presented.

1. INTRODUCTION

We address the speech separation problem. Making some
assumptions on the statistics of the voice signals we use
higher order statistics to separate mixed voices. The use
of higher-order statistics is not new to the source separa-
tion problem, see ([2] [1], [9], [1], [8] for example). Many of
these methods are applied to digital communications signals
which inherently belong to a different statistical class than
speech signals. Specifically, many such adaptive algorithms
used on digital communications signals use the fact that
the sequences are sub-Gaussian 1. We note that there are
separtation algorithms designed for use with speech signals
(notably [11] and [10]). Some methods are computation-
ally intensive, necessitating correlation matrix estimation
and eigen-decompositions or polyspectra estimations. As
an alternative, the speech separation developed herein is
designed to be computationally efficient. We exploit the
fact that speech signals are super-Gaussian (i.e. have high
kurtosis). Noting this, we may adopt similar strategies us-
ing higher order statistics after appropriate modification.

A fundamental idea of many blind separation and blind
equalization schemes in the digital communications setting
is to note that the sum of sub-Gaussian processes (as occurs
with mixing and intersymbol interference) results in a pro-
cess with statistics that differ from the original process(es).
More specifically, the mixture “looks more” Gaussian than
the originals. In [7] one finds an excellent discussion of de-
veloping measures of Gaussianity. With such a measure,
one may construct a cost function, and associated adaptive
gradient descent algorithm which minimizes this Gaussian-
ity and results in source separation or intersymbol inter-
ference reduction (for the sub-Gaussian digital communica-
tions signals). Many possible measures are possible. One
which appears quite often is kurtosis.

1The term sub-Gaussian may have different meanings among
different communities. Here it is used to denote processes having
a kurtosis less than the kurtosis of a Gaussian.

The relation of kurtosis to one of the the more popular
blind equalization algorithm known as the Constant Mod-
ulus Algorithm (CMA) [8] or Godard Algorithm [6] is dis-
cussed in [5]. For the separation of speech signals, we mod-
ify a source separation algorithm recently proposed for digi-
tal communications (sub-Gaussian) signals in [3] which uses
the CMA (or Godard) error function. This modification
adjusts for the differing statistics between digital commu-
nication signals and voice signals.

2. PROBLEM SETTING

The generic two signal separation problem is shown in Fig-
ure 1. Two sources s0 and s1 are mixed through mixing
matrix A , resulting in received signals x0 and x1. The mix-
ing relation is denoted,

X = A S (1)

where X = [x0 x1 ]t and S = [ s0 s1 ]t.
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Figure 1. Separation Block Diagram

The goal is to separate out the s0 and s1 components
present in the mixed signals x0 and x1 through the use of

matrix W
t
. Clearly, W

t
= A

t−1
achieves the desired result

(assuming A is invertible) but, A is typically unknown. In
the blind problem, W (or similarly A ) must be estimated
from knowledge only of the mixture X. The second or-
der statistics of X (i. e. the autocorrelation matrix RXX)
do not provide enough information. For this reason higher
order statistics are often considered. However, the use of
higher order statistics often requires further assumptions on
the distributions of S. In the blind separation problem (as
well as the blind equalization problem), the source distri-
butions are typically considered to be sub-Gaussian in the
sense that their kurtosis is below that of a Gaussian. The
kurtosis 2 of a zero mean random variable x is defined as
the dimensionless, scale invariant quantity,

κx =
E
{
x4
}

{E {x2}}2 (2)

where E {•} is the expectation operator. For any random
variable we have κ ≥ 1, and for a Gaussian distribution κ =

2The reader is cautioned that some texts define kurtosis a bit

differently as κx =
E{x4}

(E{x2})2 − 3. We shall however follow the

definition above as found in [13].



3. Distributions with κ < 3 are considered sub-Gaussian (or
platykurtic), and those with κ > 3 are labelled as super-
Gaussian (or leptokurtic).

3. SEPARATION BY KURTOSIS

3.1. Communications Signals

An interesting feature of kurtosis is now noted. Let u0

and u1 be two independent, identically distribute (iid), zero
mean random variables with kurtosis κu. Let w = u0 + u1

and consider κw. It can be shown that κw is always closer
to 3, than κu. More specifically,

if κu < 3 (platyurtic), then κw > κu (3)

if κu > 3 (leptokurtic), then κw < κu (4)

Since, digital communications signal are typically lep-
tokurtic. Given two iid sources, the resulting mixture will
have a higher kurtosis. Thus, a logical separation strat-
egy is to minimize the kurtosis, which in effect, is exactly
what CMA does. In [3] an iterative separation algorithm
from digital communications signals utilizing the CMA er-
ror function is presented as

W n+1 = W n − µ5W (φ(W )) (5)

where µ is the small adaptive stepsize, and 5
W
φ(W ) de-

notes the gradient of φ. Given as

φ(W ) =

N∑
i=1

E
{
(y2
i − 1)2

}
− ln(det |W |) (6)

in which the first term is as the CMA cost function, while
the second term associates a cost to duplicating a source at
the output Y . The existence of the CMA cost term can be
associated with a gradient descent algorithm performing a
kurtosis minimization on the output Y . In light of (3), such
kurtosis minimization agrees with source separation.

3.2. Speech Signals

We adopt a kurtosis-based strategy for separating speech
signal by observing that speech signal are leptokurtic (in
contrast to the typcially platykurtic communications sig-
nals). In light of (4), we choose the adaptation objective to
be kurtosis maximization. The adaptive algorithm becomes
(ignoring for the moment the desire to prevent duplicate
sources at output),

W n+1 = W n + µ5
W

(κY(W )) (7)

where µ is the small adaptive stepsize, and 5
W
κY(W )

denotes the gradient of the kurtosis of the outputs Y . For
the two channel case, performing the differentiation leads
to the update law

W n+1 = W n+µ
[−α1β1γ1w21 −α2β2γ2w22

α1β1γ1w11 α2β2γ2w12

]
where

αi = 4(wi1x1 +w2ix2)
3

βi = (−x1wi1r12 − x1w2iσ
2
2 + x2w1iσ

2
1+

w2ix2r12)
γi = 1/(w2

i1σ
2
1 + 2wi1w2ir12 +w2

2iσ
2
2)3

W =
[
w11 w12

w21 w22

]
and σ2

1 = E
{
y2

1

}
, σ2

2 = E
{
y2

2

}
, r12 = E {y1y2}. In true

implementation, knowing the actual values of σ2
1 ,σ2

2 , and
r12 a priori is not possible but these may be replaced by
simple autoregressive estimators of the form

σ̂2
i = λσ̂2

i + (1− λ)yi(k)
2

r̂12 = λr̂12 + (1− λ)y1(k)y2(k)

where λ is the estimator’s forgetting factor. It should also
be noted that a scaling factor is incorporated into the algo-
rithm, since kurtosis is a scale invariant quantity.

The critical assumption here is that the kurtosis of two
mixed voice signals has a lower kurtosis than the individual
kurtosis values (as hinted at by (4)). However, in the strict
sense, (4) is not necessarily always true for speech signals
due to the temporal correlation of speech. There is much
evidence derived from studies with sampled speech that this
relation in (4) often holds true. This issue is addressed in
the next section.

4. SPEECH, SIRPS, AND MIXTURE
KURTOSES

The underlying assumption for the proposed speech signal
separation technique is that mixtures of speech signals have
a kurtosis lower than the kurtosis values of the individual
speech signals. In this section we offer evidence which sup-
ports this assumption based on actual speech signals and
statistical models for speech.

Eight individual speech signals were sampled and the
kurtoses computed. In addition, the kurtosis of a mixture
(x0 = as0 + (1 − a)s1) of the speech signals was also com-
puted. The results are shown in Figure 2 (solid line). We
note that for the 50%-50% mixture (a = 0.5), the individ-
ual speech signals are higher in kurtosis than the mixture
for 93% of the studied cases. This indicates that the speech
signals will begin to separate from the mixture based on the
kurtosis maximization algorithm. As separation proceeds,
some of these mixtures may cease further separation (as
defined by power ratios), as indicated by the lower prob-
ability of both indivudual kurtosis being higher than the
mixture kurtosis (Figure 2). However, we have observed
in our experiments that there is always one speech signal
that is higher in kurtosis than the mixture, indicating that
at least this one speech signal could be separated from the
mixture; the remaining speech signal might be subsequently
separated from residual signal analysis and processing.

Historically, speech probability density functions (PDFs)
have been modeled with either the Laplace or Gamma PDF
[14] [15]. For these two PDFs, it can be shown that the kur-
tosis of the sum of these PDFs is lower than the kurtosis val-
ues of the individual PDFs. More recently, refinement in the
speech model has been achieved through the use of Spher-
ically Invariant Random Processes (SIRP’s) also known as
circularly or spherically symmetric random processes [16].



The use of SIRP’s to model speech signals is based on
the facts that many random processes are SIRP’s includ-
ing those with Laplace and Gamma PDFs and that actual
speech bivariate PDFs (three dimensional amplitude his-
togram taken from samples of speech signals spaced t < 5ms
apart) have been shown to exhibit SIRP-like qualities [18],
[19], [17]. Based on work by Brehm, the SIRP which in-
cludes the Gaussian, Laplace, Gamma, and K0 PDF’s, was
found to be especially suited to modeling the measured den-
sities of speech signals. By continuous variation of b1 and
b2, a whole family of modeling PDF’s may be generated,
one of which may be a better approximation to the speech
PDF than Laplace or Gamma PDFs. Brehm and Stammler
found that speech PDFs can be closely matched by choosing

−0.4 ≤ b1 ≤ −
1

3
(8)

and

b2 ≥ 0.25 (9)

Furthermore, when the time shift between the two speech
signals used to compute the bivariate speech PDF is less
than 3.8 ms, the bivariate PDF corresponding to SIRP fits
the observed contour lines in the bivariate PDF very well
[17].

Five SIRPs were modeled according [17] and the Kurtoses
computed. In addition the kurtosis of a mixture (aSIRPX+
(1−a)SIRPY ) of the SIRP’s was also computed. The results
are shown in Figure 2 (dashed line). In all 50%-50% mixture
cases, κs0

, κs1
> κxi

the individual SIRP’s are higher in
kurtosis than the mixture meeting the assumed necessary
conditions for the proposed algorithm.
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5. SEPARATION EXAMPLES

In this section the performance of the algorithm in (8) is
demonstrated using two separtation examples (case I and
case II). Here, the mixing matrices are arbitrarily chosen.

5.1. Case I

A I =
[

0.7 0.3
0.3 0.7

]
, (10)

s0 and s1 are sampled speech of a male speakers reading
different text segments of a text book with κs0

= 14.9 and

stepsize µ = 10−6

moment est. forgetting factor λ = 0.999

separation matrix initialization W (0) =
[

1 0.1
0.1 1

]
initial moment estimates r̂12(0) = 0.1

σ̂1(0) = 0.1
σ̂2(0) = 0.1

Table 1. Example Simulation Parameters

κs1
= 14.2. The received mixtures x0 and x1 have kurtosis

values of κx0
= 11.6 and κx1

= 11.1 verifying the assump-
tion on mixed speech signals having lower kurtosis. The
severity of the mixing renders to signals x0 and x1 unintel-
ligible.

Plotted below are the power ratios of the s0 and s1 com-
ponents in both y0 and y1 which provides a measure of the
separation of the source components are the output. The
adaptation parameters are found in Table 1.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

10

20

30

40

50

60

70

80

90

100

110

Se
pa

rti
on

 (d
B)

iterations

Speaker 7

Speaker 1

Figure 3. Case I of Source Separation using Algo-
rithm

The achieved separation is very good, exceeding 40dB
on both channels at times. Qualitatively, listening to the
resulting separated signals, the second speech signal was
virtually imperceptible.

5.2. Case II

Here s0 and s1 are different speakers reading text segments
of a text book with κs0

= 27.9 and κs1
= 11.3. The mixing

matrix

A II =
[

0.8 0.2
0.7 0.3

]
, (11)

is used resulting in received mixtures x0 and x1 have kur-
tosis values of κx0

= 24.9 and κx1
= 20.8. Note here that

one mixture violates the assumption that the necessary as-
sumption and only one source is separted. This is thought
to be due to the widely disparate source kurtoses.

Again, the power ratios of source components are plot-
ted using the algorithm with the same parameters. The
achieved separation on one output is very good, again ex-
ceeding 40dB on one channel. However, at the other out-
put channel little separtation is acheived (about constant at
10dB). But, since excellent separation has been acheived at
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Figure 4. Case II of Source Separation using Algo-
rithm

the other output, it is possible to perform further processing
using residual signal analysis.

6. CONCLUSION

We have adopted some ideas and results from the digital
communications community used in the blind source separa-
tion and blind equalization problem and modified them for
use in the speech separation problem. The presentation of
an algorithm along with its motivation is described through
the concept of kurtosis maximization with leptokurtic sig-
nals. While originally based on heuristics, the analysis of
SIRP’s in relation to statistical speech models provides a
strong framework for analysis. Initial analysis supports the
conjecture regarding speech mixing and kurtosis effects for
reasonable known SIRP modeling bounds on human voice.
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