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ABSTRACT

The problem of blindly estimating multiple digital
co-channel communication signals using an antenna array
is studied in the presence of multipath fading. We de-
velop a fast sequential-estimation algorithm for separating
multi-user signals based on the geometric observation made
by Hansen and Xu in [2]. When the signals are constrained
to a �nite alphabet, it is possible to visualize the geomet-
ric properties of the problem, which can be exploited to
sequentially extract the digital co-channel communication
signals. We will present simulation results comparing speed
and BER performance with di�erent methods.

1. INTRODUCTION

A source separation problem is considered in the context of
blind joint space-time equalization of multiple digital sig-
nals. Such a problem is motivated by digital wireless com-
munications signals transmitted over multipath channels.
To solve this problem, we have two properties that we can
exploit. The �rst is that the signals share a known M-ASK
or QAM digital signaling alphabet. The second is that the
signals have di�erent, but unknown, spatio-temporal char-
acteristics as measured through an antenna array and/or
oversampling.

In a deterministic discrete-time setting of a multiple-
inputs, multiple-outputs (MIMO) system, the block-
Toeplitz structure has been exploited by subspace-based al-
gorithms. Recently, this property has been exploited to de-
convolve the e�ects of channels (called multi-channel decon-
volution (MCD)) by the di�erent researchers [9, 8]. How-
ever, the MCD only converts the FIR-MIMO problem into
the problem of the separation of instantaneous multiple sig-
nals. If the signals possess the property of the �nite al-
phabet, some simpli�cations occur. For separation, these
simpli�cations have led to the development of the �nite-
alphabet algorithms. Among them, the ILSP and ILSE
described in [6, 7] are the most famous ones. The MCD
and �nite-alphabet algorithms have been readily combined
by the di�erent researchers in order to solve the FIR-MIMO
problem. Since MCD is quite costly, it cannot be readily
used in practical systems where the speed is paramount.
This was our main motivation for this paper.

In this paper, we show that we can eliminate computa-
tionally intensive multi-channel deconvolution. Although
we use the original geometric observations made by Hansen

and Xu, we extend the present paper beyond [2] by provid-
ing a signi�cantly more e�cient implementation for FIR-
MIMO systems. Otherwise, the original approach would
require us to work on the outputs of MCD of FIR-MIMO
sytems.

2. PROBLEM STATEMENT

We consider the general digital co-channel communication
system with d (d > 1) users and with an array of M an-
tennas. The vector of array outputs at a time k through
multipath channels fhig
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where Li is the maximum order of the ith user'sM channels
(M � 2 and L � 1). For simplicity of the derivation, we
initially assume that all the channels are equal with the
length of L. We do not address the general case due to
space limitations.
For a �nite number of samples, we describe the algebraic

relation between the input and output
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In-phase and quadrature sampling causes the case of H
complex which requires a slight modi�cation to the above
procedure. We reduce this case to the real case by rede�ning
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Figure 1. Source Separation with Geometric Ideas

This e�ectively doubles the number of antennas and the
equations.
Because our algorithm operates on a whitened and

dimension-reduced space, we �rst obtain the source cor-
relation matrix from the deterministic correlation of the
received signal dataset. Let

RXX = [Us Uo]
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where the whitened and dimension-reduced problem is de-
�ned by Y =WX =W ~HS+W ~V = HS+V where W is
the whitening matrix. AndW is obtained byW � ��1

s UT
s .

3. A GEOMETRIC-BASED APPROACH

Our blind source separation scheme is based on the geo-
metric properties of the problem when M antennas receive
multiple synchronous users with a common digital commu-
nication method via memoryless channels. Let us briey
describe the geometric ideas which were originally devel-
oped for multiple synchronous users in [2]. We �rst consider
the BPSK case. We assume that S consists of 2Ld distinct
columns. This special signal matrix S will be denoted as
SLd. We can think of the 2Ld columns of SLd as points in
RLd de�ning the vertices of a Ld-cube or a hypercube. Note
that the linear transformation of SLd by H maps the cube
into a parallelogram. If H is unitary, we get a rotated cube.
In the next section, we will explain how to get a approxi-
mate unitary H from the noisy dataset, i.e.,X = HS+V.
We can express SLd mathematically as

SLd =

Ld\
i=1

[
�2S

H(ei; �): (6)

where H(ei,�) de�nes a hyperplane with normal vector ei
(the ith unit vector) and o�set �. In this paper, we will
consider only the real M-ASK alphabet

SM-ASK = f�1;�3; � � � ;�(M� 1)g; (7)

The real data space X � HSLd then can be expressed as

XLd =

Ld\
i=1

[
�2S

H(H�T
ei; �): (8)

Note that the transpose of the normal vectors in this equa-
tion, i.e., eTi H

�1, are the rows of H�1. Thus �nding one
of the normal vectors is equivalent to �nding a row of H�1

up to a scale factor.

3.1. Extended Hyperplane Algorithm

To identify a single row of S from the data X, we would
estimate a single row of H�1 and perform multiplication on
X from the left. As discussed in the previous section, in the
real case we can think of our estimated vector as de�ning a
hyperplane that partitions the space. Recalling equation 8,
what we would like is a hyperplane passing through the
origin that is parallel to a pair of \sides" of the convex hull
of X. The resulting normal vector would take the form
H�T ei. This result was described with a theorem in [1].
Although the the assumptions of the theorem appear quite
restrictive, with H unitary, noise V = 0, and special S =
SLd, the more general problem X = HS +WV inherits
enough of the behavior of the objective function to yield
useful estimates. Note that in Theorem in [1], the objective
function is invariant with respect to a re-ordering of the
columns of XLd (or equivalently SLd). If, in addition to the
assumptions of Theorem in [1], we also assume that SLd has
a block-Toeplitz structure, then we can apply the following
theorem.

Theorem 1 Assume XLd = HSLd, with SLd having struc-

ture as above. Perform the following maximization:

max
k�lk2=1

LX
l=1

X
x2X

j�T
l Xj (9)
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where l = 1; : : : ; L � 1; shift [�] operator is de�ned as

[s(k + 1) � � � s(N)] = shift [s(k) � � � s(N � 1)] :

Assume H is ordered
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�
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Then
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�
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�
(12)

is a globally maximizing solution to our problem.

The proof can be found in [10].
We can use a very simple gradient search to maximize

the objective function in Theorem 1. More importantly,
this simple gradient search generalizes to the case of noisy
data X = HS+WV. ConsiderX

x2X

���T
l x
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T
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where f�lg are the local gradients.
Because of the deterministic data setting, we can force

the block Toeplitz structure for each user. In this case,
we extract the Toeplitz row block from the signal matrix
S. We estimate L rows of H simultaneously, in order
to enforce the Toeplitz structure on the partition vectors
fpn;0;pn;2; � � � ;pn;L�1g. We use a majority rule in con-
structing a block Toeplitz matrix required for the next it-
eration. We use this gradient search as the basis for our
Hyperplane subroutine which follows:



1. Given whitened real dataset X = HS +WV, initial
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(c) Use a majority rule in forcing a block-Toeplitz
structure on

�
pTn;0 � � � pTn;L�1

�
and form the

block-Toeplitz partition matrix
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3. Continue until kAn �An�1k converges

4. A = [�n;0 � � � �n;L�1],

5. S = S [A
TX]

6. Return A and ST

The function S [:] denotes a projection to the closest element
in the alphabet S. The projection matrix in step 2e projects
�n;l onto the constraint space �

T
n�1;l�n�1;l = 1.

The Extended Hyperplane algorithm provides the esti-
mates of AH and ŜHi . Ŝ

H
i is one of the block-Toeplitz sub-

matrices of S. We need to remove the parts corresponding
to the formerly estimated the block-Toeplitz sub-matrices,
i.e., Sk = [ST1 � � � STk ]

T , by deating the dataset. In order
to deate the problem to dimension (d � k)L, we will re-
move the contributions of the currently estimated Sk from
X by forming an oblique projection operator N̂ T

k E [10, 2].

However, we omit the derivation of N̂ T
k E due to space lim-

itations.

3.2. Testing for the Global Maxima

The extended Hyperplane subroutine will converge to a
global maximum if it is su�ciently close to that maximum.
Because the subroutine may �nd local maxima, it is imper-
ative to test for global convergence. Under the hypothesis
that the subroutine has successfully estimated ŜTk+1 = STk+1

and AT
1 =

�
�1 � � � �L

�T
= (N̂ T

k Hd�k)
�1[e1 : : : eL],

then
Ŝ
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Using the derivations in [10], the residual term can be
rewritten as

r
T = Ŝk+1 � Sk+1 = �Sk+1PSk + (AT N̂ T

k EW)V: (15)

Since our test is a statistical test, we need to �nd the total
variance of the squared error of the residual.
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Under our hypothesis, the quantities STk+1PSkSk+1 and
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k EW) are known. Note that the quantity
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which under our hypothesis will be distributed as �2(N).
Note that �2(N) will be certainly true when rT has a single
row. Multiple rows will be correlated, so the test statistic
is only approximately �2(N). As we will see in the simu-
lations, this approximation is valid in most of cases. Thus,
even though we do not know the correlation between Sk
and Sd�k, we can form a simple test statistic to determine
whether the Hyperplane algorithm has converged to a cor-
rect estimate of Sk+1.

4. EXTENDED HYPERCUBE ALGORITHM

Having discussed all the steps, we can now outline our ap-
proach to improve the presentation.

1. Given ~X = ~HS+V and initial (or random) ~H0:

2. Calculate the whitening matrix W and form whitened
dataset X =W ~X.

3. X1 = X, Ŝ0 = [ ] W1 =W, B =
�
W ~H0

��T
, B1 = B.

4. For k = 1 to d

(a) �0;l =
Bkek(l)

kBkek(l)k
and A0 = [�0;0 : : : �0;L�1].

(b) Call the extended Hyperplane algorithm with input

Xk and A0. Return Ŝ
T
k and A.

(c) Form the residual vectors rT = ATXk � Ŝ
T
k .

(d) Test the convergence by forming the �2(N) test
statistic in equation (16) and test against a thresh-
old. If smaller than threshold, continue, else repeat
steps 4b and 4c.

(e) Calculate N̂ T
k E as in [10], then Xk+1 = N̂ T

k EX.

5. If desired, we can estimate ~H: ~̂H = ~XŜT (ŜŜT )
�1
.

6. Return Ŝ and Ĥ (and/or ~̂H.)

The Bk matrices are used to exploit a priori knowledge
of the ~H matrix, if any; otherwise a random initial choice
can be used. When A = [�0 � � � �L�1] have mis-
converged the residual is dramatically larger than for global
optima. The complexity of each individual iteration is
O(kLN). Since this is an iterative step, we will de�ne a
constant KHP representing the average number of itera-
tions used in the Hyperplane subroutine. Thus the com-
plexity of the extended Hyperplane call in step 4b of the
Extended Hypercube algorithm is O(KHPLdN). The com-
plexity of the step 4 is O((Ld)2N). Since step 4 loops
d times, its total order is O(L2d3N + KHPLd

2N). The
complexity of the Extended Hypercube algorithm is then
O(M2N + L2d3N +KHPLd

2N).



5. SIMULATION RESULTS AND

CONCLUSIONS

We simulated the proposed method in MATLAB with a
varied noise power. In the experiment, we had d = 2 BPSK
sources transmitting over the randomly generated channels.
In the simulation for each user, the multipath delay, and
the number of multipath components were randomly chosen
to be uniformly distributed within [0 3T ], and [1 10],
respectively. We also used M = 8 antennas and N = 100
data samples. The symbols in S were chosen with equal
probability. We scaled the received power of both signals to
be equal. The real and imaginary components of V where
each drawn from a zero-mean Gaussian distribution with
variance �2=2 for a total noise power of �2. The signal-
to-noise ratio de�ned as the average SNR per signal per
antenna SNR = kHSk2

dMN�2
. After each run, cumulative bit

errors for all d signals were calculated.
In order to have a comparison for our BER curves, we also

processed the data with known pseudo-inverse processing
(ZF), or zero-forcing de�ned in [5]. One of the well-known
disadvantages of zero-forcing equalizer is that it enhance
the noise. Because this causes very high bit error rates as
we will see in the experiment, we also employed a MSE
(minimum squared error) equalizer with the known H and
noise variance, �2 [5].
Figure 2 displays the BER curves for the both the ex-

tended hypercube algorithm and MCD-ILSP algorithm as
a function of input SNR for d = 2 and M = 8 with a BPSK
alphabet. The curve for ZF equalizer and MSE equalizer
with known ~H is also plotted. Except the �rst user, MSE
did not generate any errors for this experiment. Note that
our approach outperforms the MCD-ILSP. Figure 3 displays
the average Kilo-ops per block of M �N data. The Mod-
i�ed Hypercube algorithm requires markedly fewer oating
point operations than the MCD-ILSP algorithm because of
the elimination of costly MCD processing.
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Figure 2. Bit error rates for M = 8 antennas, d =
2 BPSK signals, and N = 100 data samples as a

function of input SNR.
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Figure 3. Average number of Kilo-ops per data

block for M = 8 antennas, d = 2 BPSK signals, and

N = 100 data samples as a function of input SNR.


