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ABSTRACT

A method for multidimensional hierarchical clustering that is in-
variant to monotonic transformations of the distance metric is pre-
sented. The method derives a tree of clusters organized according
to the homogeneity of intracluster and interpoint distances. Higher
levels correspond to coarser clusters. At any level the method can
detect clusters of different densities, shapes and sizes. The number
of clusters and the parameters for clustering are determined auto-
matically and adaptively for a given data set which makes it unsu-
pervised and non-parametric. The method is simple, noniterative
and requires low computation. Results on various sample data sets
are presented.

1. INTRODUCTION

The problem of hierarchical clustering in multidimensional sample
space finds applications in many areas. This paper presents an un-
supervised and non-parametric method for hierarchical clustering
in high dimensional data sets. There are many methods which give
clusters for chosen parameters and others which do provide a hier-
archy of clusters. Some of the most popular algorithms available
for clustering are k-means algorithm, graph-theoretical algorithms
and linkage methods [1].

The k-means algorithm starts with an arbitrary partition and
consists of alternately computing the centroids of the partitions at
each iteration and reassigning the samples so as to minimize the
sum-total of variances of individual partitions. Because of its de-
pendence on the centroid this method is more suitable for detecting
compact and globular clusters. For example it can not detect two
distinct clusters having approximately the same centroid like those
shown in figure 1(e). Also it is not invariant to monotonic trans-
formations of the proximity matrix. This means that one has to be
careful in scaling and combining different variables into a proxim-
ity measure[2].

Zahn [3] gives a number of graph-theoretical algorithms based
on MST (minimum spanning tree). The algorithm consists in find-
ing the MST of the given pattern , identifying and deleting inconsis-
tent edges in the MST and forming connectedcomponents of edges
to get the clusters. The method works good on various data sets
including non-spherical clusters and clusters with smoothly vary-
ing point densities but special heuristics are needed to detect in-
consistent edges in complex situations e.g. in the case of two ho-
mogeneous clusters of slightly different point densities shown in
figure 1(a) the sparse cluster will have many inconsistent edges.
Zahn suggests detecting and deleting the denser cluster first and
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then clustering the remaining data. Also prior knowledge of the
shapes of the clusters is needed to get the proper heuristic for iden-
tifying the inconsistent edges[1]. This can be a problem in more
than two dimensions.

Methods based on Voronoi neighborhood have also been pro-
posed [4, 5] and shown to yield good results for various kinds of
clusters. However such methods have been developed mainly for
two-dimensionaldata due to the computationaldifficulties in higher
dimensions[1].

The above methods are inherently partitional. The single and
complete-linkagemethods[2] and Ward’s method [6] are some com-
monly used agglomerative hierarchical clustering algorithms. In
the single-linkage method the similarity between two clusters is judged
by the most similar sample points, one in each cluster, whereas in
the complete-linkage method it is judged by the least similar points.
In Ward’s method clusters whose union results in minimum loss of
’information’ are combined at each step. Though these methods
have several desirable theoretical properties they are biased toward
finding spherical clusters even though the data contains clusters of
other shapes. Also Ward’s method performs better when the clus-
ters are approximately same size than when they are of different
sizes. Single and complete linkage methods are invariant to mono-
tonic transformations of the proximity matrix but Ward’s method
is not[2].

In this paper we present a method for hierarchical clustering
aimed at removing some of the difficulties mentioned above. The
method can detect sphericalor non-spherical clusters and these clus-
ters do not have to be compact, i.e., there can be holes in them as
shownin figure 1(e). Also the notion of density is built in the method
and hence it can robustly detect even homogeneous clusters that
are close by but differ in point density. The method is unsuper-
vised and non-parametric- it does not need to know the number of
clusters a priori. It is applicable to multi-dimensional data as well.
The method is invariant under monotonic transformations of the
proximity matrix because it depends only on the relative ranks of
the sample points. Moreover the method is simple, deterministic
(which implies that it does not depend on the order in which the
points are scrutinized) and has low computational costs.

2. OVERVIEW AND MOTIVATION OF THE
ALGORITHM

The algorithm consists of deciding on the neighbors of each point
and then finding connected components to get the clusters in the
given data. The data to be clustered is a set of NL-dimensional
points on which a suitable metric d is defined. The input to the algo-
rithm is the proximity matrix (i.e. the d value for all pairs of points)
of this set and the output is a hierarchy of clusters. Our definition of



the neighborhood of a given point depends on what is called as the
mutual neighborhood value (mnv) [7] between two given points.
Let P and Q be two points of the given data set. If P is the mth
nearest neighbor ofQ andQ is the nth nearest neighbor of P then
the mnv betweenP andQ is defined to bem+n. The main moti-
vation for this definition is that two points P and Q have a higher
tendency to group if not only P is close to Q but also Q is close
to P . The mnv is a semi-metric and does not satisfy the triangle
inequality.

We first present a basic scheme and then motivate two impor-
tant improvements to this scheme which lead to our final algorithm.
A parameter MT is used to denote the acceptability of points as
neighbors in terms of their mnv. Given a point P belonging to the
data set all pointsQ such that mnv(P;Q)�MT are said to belong
to the neighborhood of P . This gives us a neighborhood graph on
the data set whose connected components are the required clusters.
This is similar to the schemedescribed in [7] but there are two mod-
ifications that make it attractive as explained below.

First consider figure 1(a) which shows two clusters of different
densities that are close by. Points P and Q have an mnv of 7 be-
tween them. So ifMT is say 8 (which is not very large) thenQwill
be called neighbor of P (and vice-versa) and this one link would
merge the two clusters. PointK has only an mnv of 6 w.r.t. Q even
though it is at a larger distance fromQ thanP is. This happens be-
causeP has a higher density of points around it and hence is likely
to belong to a different cluster. This suggests that we should stip-
ulate that if mnv(Q;P ) > mnv(Q;K) then d(Q;P ) > d(Q;K).
ElseP should be regarded as not belonging to the neighborhood of
Q. We shall call such a point P invalid w.r.t. Q .

Second point to note is the dual of the point mentioned above.
Q will never be marked invalid w.r.t. P because of the large dis-
tance ofQ from P (compared to other points close to P ) and hence
its larger mnv w.r.t. P seems justified. Hence underour basic scheme
with just the above modificationQwill belong to the neighborhood
ofP and hence the two clusters will merge. Hence we need to stip-
ulate that a pointQwill not belong to the neighborhood of pointP
if P does not belong to the neighborhood ofQ (i.e. if P is invalid
w.r.t. Q).

This explains the two modifications we make. Then the algo-
rithm just consists of creating a neighborhood graph on the given
data (keeping in mind the above two stipulations and the thresh-
oldMT on mnv) and finding connectedcomponents. Note how the
above two stipulations help detect clusters of different point den-
sities more robustly than simply using the mnv. Also the method
is invariant to monotonic transformations of the proximity matrix
since the mnv and the above two stipulations depend only on the
relative distances among the points (since if P is at a larger (or
smaller) distance from Q it will also remain so under any mono-
tonic transformation). Further since we only use the metric d the
method is equally applicable in more than two dimensions.

The aboveobservationsare formalized in the definition of neigh-
borhood of a given point: a point P belongs to the neighborhood
of point Q if and only if all the following conditions hold :

1. mnv(Q;P ) �MT ;

2. There exists no point K s.t. mnv(Q;K) <mnv(Q;P ) but
d(Q;K) � d(Q;P ). A point P violating this constraint is
called invalid w.r.t. Q.

3. Q is not be invalid w.r.t. P .

It should be noted that the last two stipulations can give rise
to some small clusters because of the strict condition that neither

point should regard the other as invalid if they are to be neighbors
of each other. But at the same time these stipulations also make
it possible to identify problematic clusters like those that are close
by but have slightly different densities. To address this we do some
post processing of the small clusters (say of size � 5) : we check
to which clusters individual points of the small cluster would have
belonged if one of the last two stipulations is relaxed. The smaller
cluster is merged with larger cluster which gets maximum number
of votes. Note that if a small cluster is perceptually distinct from
other clusters than all of its points would satisfy the last two stipu-
lations and hence this cluster would not be merged with any larger
cluster. Also note that we do not just activate all the links that come
up when one of the last two constraints is relaxed because this can
cause two bigger clusters to each merge with the smaller one and
thus merge themselves in one cluster.

3. THE HIERARCHY

The final clusters we get depend on the parameter MT . If MT is
increased the clusters start merging. Note that increasingMT can
only merge clusters but can never split them. Therefore if for a
certain range ofMT values the number of clusters remains the un-
changed then the actual clusters corresponding to these values of
MT must be the same. This suggests that if we plot a graph of the
number of clusters vs. theMT value at which those many clusters
are obtained (we shall call it the stability curve ) then any constant
levels (plateaus) of this graph will indicate that clusters have not
changed even though the MT is increased. Therefore such clus-
ters denote a valid partition of the data at some scale. These clus-
ters form a level of the cluster hierarchy indexed by the correspond-
ing range ofMT values. Parts of the stability curve containing no
plateausare transients where some clusters merge asMT is increased.
Such clusters and the correspondingMT values are discarded – they
do not correspond to valid groupings at any scale.

4. THE ALGORITHM

The algorithm consists of the following steps:

Step 1 (Sorting the distance pairs) : Let D = [d(i; j)] denote
the proximity matrix and let m = MT � 1. Since MT is
the maximum allowd value of mnv between two neighbors,
we need to consider only upto mth nearest neighbors of a
given point. Sort D to identify m nearest neighbors. Let
the matrix thus got be denoted byR = [rij ]; i = 0 to N �
1; j = 0 to m � 1 where rij is the jth nearest neighbor of
i.

Step 2 (Finding the mnvs) : R contains entries for a maximum
of Nm pairs of points. Use R to construct a matrix con-
taining mnvs of these pairs of points.

Step 3 (Sorting the mnvs) : Sort the mnvs computed in step 2.
Let the matrix containing the sorted mnvs be called V =
[vij]; i = 0 toN � 1; j = 0 tom� 1 where vij is the point
that is jth closest to i in terms of mnv of i with all points.

Step 4 (Making neighbors) : Let i = 0; j = 1 and r = 0. If
mnv(i; vij) � MT and d(i; vij) > r then mark vij as the
neighbor of i and r  d(i; vij). j  j + 1. If j >= m

or mnv(i; vij) >MT then i  i + 1. If i >= N stop else
repeat this step.



Note that we have taken care of conditions 1 and 2. Condi-
tion 3 is now enforced by removing any neighborhood rela-
tions that are not symmetric.

Step 5 (Finding connected components) : Find connected com-
ponentson the neighborhoodgraph obtained aboveand iden-
tify any small clusters.

Step 6 (Post processing) : If there are any small clusters then find
out if they would merge with any larger cluster if one of con-
ditions 2 and 3 is relaxed as described in section 2 and mod-
ify the neighborhoodlinks accordingly. Hencefor each point
of the small clusters we need to find out which all of its m
nearest neighbors would belong to its neighborhood if the
condition mentioned is relaxed. Connected components of
this graph give the required clusters.

5. COMPUTATIONAL COMPLEXITY

In step 1 for a given point it takes O(N logm) to get the m near-
est neighbors and then O(m logm) to arrange them in ascending
order of their distances. Hence this step has a total complexity of
O(((N +m) logm)N) for all N points. In step 2 for each entry
inRmatrix we have to search in the worst case a list ofm points in
the other row to find out the mnv. Hence the worst case complexity
of this step case is O(Nm2). Step 3 has O(N �m logm) com-
plexity. In step 4 we need to visitm points in worst case around any
point to get its neighbors. Hence this step hasO(Nm) complexity.
Steps 5 and 6 each haveO(Nm) complexity.

Note thatm will be usually much smaller compared to N and
hence the major computational load is in the first part in sorting the
distances. This computation may be reduced if some organization
of the data already exists for the particular application. Also note
that for computing the stability curve we need to repeat only the
last three steps which are O(Nm) complexity.

6. RESULTS

Figure 1(a)(left) curve for the data points shown in figure 1(a)(right).
The stability curve is shown only starting from anMT of 5 because
there are no plateaus before that. Let n denote number of clusters.
We see that we have a distinct plateau at n = 2. The corresponding
clusters are shown in figure 1(a)(right). We also conducted experi-
ments to see how the stability curve would look like if the clustering
was done only on the basis of mnv (i.e. using only condition 1 ). It
was found that in that case the stability curve had no plateaus ex-
cept for n = 1. This illustrates the crucial role played by the other
two conditions in deciphering valid clusters.

Similar results for another data set are shown in figure 1(b).
Here we have plateaus for n = 3 and 2. The results for n = 3 are
shown in figure 1(b). At the next plateau corresponding to n = 2
the clusters shown by o and + merge. We can argue that this is de-
sired because the density of o points is closer to that of + points
than * points. The algorithm achieves this because the concept of
invalid points (in conditions 2 and 3) captures the notion of density.

Figure 1(c) shows the results for anotherdata set. Here we have
a large numberof plateaus in the stability curve. The plateau atn =
15 corresponds the 15 perceptually distinct clusters in the data set
which can be easily perceived in the figure. This corresponds to the
finest level of detail. Figure 1(c) shows the grouping corresponding
to the plateau at n = 2 . We can note that this is in fact what one
would perceive when seen from a very course level.

Finally figures 1(d) & (e) shows the results for two more data
set. The results for the n = 2 plateaus (which are the only signifi-
cant plateaus) are shown in figures 1(d) and 1(e). Again we see that
the clusters have been captured successfully.

7. CONCLUSION

An unsupervisedmultidimensional hierarchical clustering algorithm
that is able to detect clusters with different densities in a more ro-
bust way compared to using only the mutual neighborhood value is
developed. Results on various data sets have been presented which
illustrate the efficacy of the method in detecting clusters of various
kinds. Although results for only 2-D are presented the method is
applicable just as well in higher dimensions. The salient features
of the algorithm are:

1. It can robustly detect clusters that are close by and differ in
point density. It has no difficulty in detecting clusters that
are well separated.

2. It gives a hierarchy of clusters that are perceptually mean-
ingful.

3. It is invariant to monotonic transformations of the distance
metric. Hence the difficulties involved with scaling and com-
bining different variables into the distance metric are of less
concern.

4. It is not limited spherical or equal sized clusters or any par-
ticular metric.

5. It does not require any user specified parameters such as the
expected number of clusters or a starting classification as re-
quired by many other algorithms.

6. It does not depend on the order in which the points are pro-
cessed.

7. It is simple, non-iterative and has low computation cost.
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Figure 1: Left figures show the stability curve and the right figures show the clusters corresponding to the plateau marked R on the stability
curve.


