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ABSTRACT

The Discrete Wavelet Transform (DWT) has been applied to data
compression to decorrelate the data and concentrate the energy in
a small portion of the coefficients. Compression can be achieved
since most of the quantized wavelet coefficients are zeros. For the
decoder, the traditional inverse discrete wavelet transform (IDWT)
has a complexity proportional to the size of the data. In this pa-
per, we propose a mapped inverse discrete wavelet transform algo-
rithm (MIDWT) that takes advantage of the sparsity of the quan-
tized wavelet coefficients, and significantly lowers the complex-
ity of the IDWT to the level that is proportional to the number of
non-zero coefficients. We further generalize the MIDWT to pro-
gressive decoding, and propose a realization of progressive IDWT
without any run-time multiplication operations. Experiments show
that our algorithms outperform the traditional IDWT for sparse co-
efficients, especially for progressive decompression.

1. INTRODUCTION

The discrete wavelet transform (DWT) is widely used for data
compression [10, 9]. Wavelet based still image compression meth-
ods not only out-perform traditional methods in the rate-distortion
sense, but also possess built-in scalability such that single bit stream
can be transmitted progressively and decoded from coarse to fine
resolution. Scalability is also very important for video compres-
sion, thus wavelet based method is incorporated in the proposed
MPEG4 standard [3].

In many situations, the data are first compressedonce, then
the compressed bit streams are transmitted over the communica-
tion media like the Internet, or stored on the storage media like the
digital video disk (DVD). Finally, copies of the same bit stream are
decompressedmany timesat different places and different times.
Over all, the inverse discrete wavelet transform (IDWT) used in
the decoder is performed much more often than the DWT used in
the encoder. Progressive decoding of embedded bit stream, where
IDWT is used many times to reconstruct images at different reso-
lutions [10, 9], serves as an example which could benefit greatly
from a fast IDWT algorithm.

The wavelet transform decorrelates the data and concentrates
the energy into a few coefficients. After quantization, a large num-
ber of the wavelet coefficients are zero. Consequently, after the in-
verse quantization, the inputs to the IDWT have lots of zero value
coefficients as well. Although many compression schemes have
been studies to take advantage of the sparsity in the DWT coeffi-
cients, the same sparsity has been ignored by IDWT. The goal of
this paper is to propose and study fast IDWT algorithms that take
advantage of the sparse inputs.

The discrete cosine transform (DCT) has also been extensively
used for data compression. Similar to the DWT case, the quantized
DCT coefficients also have plenty of zeros for most natural data.
Several inverse discrete cosine transform (IDCT) algorithms have
been proposed to take advantage of the sparsity to speed up the
IDCT, e.g. the mapped IDCT (MIDCT) by McMillan and West-
over [6], and the further improvement by Hung and Meng [4]. The
basic idea is to treat inverse transform as a weighted sum of ba-
sis functions, and ignore those where the weight is zero. Apply-
ing similar idea of the MIDCT, we propose the mapped IDWT
(MIDWT) which could significantly reduce the number of opera-
tions when decompressing most natural data. We further develop
MIDWT techniques specific to wavelet transform. One of the situ-
ations that is unique to some of the embedded wavelet based com-
pression algorithms is that it is possible to progressively decom-
press data from coarse to fine resolution. Straight forward realiza-
tion of the progressive IDWT requires one IDWT per resolution.
By generalizing our basic mapped IDWT, we develop the progres-
sive mapped IDWT that does not require any multiplications.

The paper is organized as follows. We first briefly review the
basic ideas of the mapped IDCT. The main result of this paper is
developed in section 3, where we apply and generalize the idea of
MIDCT to the wavelet transform. We further extent our algorithm
to the progressive reconstruction from embedded bit stream, and
develop a multiplication-free algorithm in section 4. Examples
and performance analysis are shown in section 5.

2. REVIEW OF MAPPED IDCT

The DCT has many nice properties [8], and many compression
standards are based on DCT [7, 3]. Figure 1 is a simplified di-
agram for DCT based compression and reconstruction. The sig-
nal X is first transformed into frequency domain by the DCT. The
DCT coefficientsD are further quantized and reconstructed to ob-
tain coefficientsC, whose components only takes on values in a
discrete set. Error is usually introduced in the quantization step,
i.e. C is an approximation ofD. Thus the result of IDCTY is an
approximation ofX.

For both JPEG and MPEG, type II [8] 2D8� 8 DCT is used.
Since a 2D IDCT applied to an8� 8 block of image is equivalent
to an 8 point 1D IDCT applied to rows, followed by an 8 point 1D
IDCT applied to columns, here we concentrate on 1D algorithms.
The basis functions for the 8 point DCT are

bi(j) = �i cos
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Figure 1: Diagram for DCT based compression and reconstruc-
tion.

where�0 = 1=
p
8, and�i = 1=2 for i > 0. There are only 8

basis functions, soi = 0; 1; : : : ; 7. The reconstructionY can be
written as a weighted sum of these basis functions as

y(j) =

7X
i=0

cibi(j); j = 0; 1; : : : ; 7; (2)

or, in vector form

Y =

7X
i=0

ciBi: (3)

Traditional fast DCT and IDCT algorithms take advantage of
the structure of the basis functions to reduce the numerical oper-
ations [8]. However, the mapped IDCT proposed in [6] takes a
rather different, and somewhat straight forward approach. The key
observation on equation (3) is that we do not need to weigh the
basis function if the corresponding coefficientci is zero, and we
do not need to cumulate that weighted basis function either. That
is, equation (3) is equivalent to

Y =
X
i:ci 6=0

ciBi: (4)

The 2D version of the mapped IDCT is proposed in [6], where
there are8 � 8 = 64 coefficients and corresponding basis 2D
functions. There are two main reasons that make the MIDCT a
practical algorithm. First, only a few out of the 64 coefficients are
non-zero. Second, even if the coefficients are not zero, we do not
need 64 multiplications to weigh the basis functions since many
values in the 64 point basis function are duplicated, thus we only
need one multiplication for eachuniquevalue in the basis function.

Symmetry property of the basis function is also observed and
taken advantage of in [4] to further speed up the IDCT. It has been
found that the symmetric mapped IDCT is faster than traditional
IDCT when the number of non-zero coefficients are small. The
exact cross-over point depends on the computer architecture.

3. MAPPED IDWT

The DWT is another very powerful tool for signal analysis and
synthesis, representation and compression. The general wavelet
theory is very rich, and warrants extensive treatment [2, 12, 1]. In
this paper, we only look at the wavelet theory from the discrete
basis function point of review.

For a given DWT, we have a pair of filtersh (lowpass), andg
(high pass). The scaling functionS and the wavelet functionW at
different scale can be obtained as

Sj+1 = up(Sj) � h; Wj+1 = up(Wj) � h; (5)

with
S1 = h; W1 = g; (6)

whereup() denotes up-sampling, and� denotes convolution. Sim-
ilar to the IDCT case in section 2, we can write the IDWT as a
weighted sum of basis functions as

Y =

NX
i=0

ciBi; (7)

whereN is the data length,Bi denotes the wavelet basis func-
tion Wj on various scales, and the scaling basis functionSj on
the coarsest scale. Unlike the DCT case where the basis func-
tions are on the same scale and have the same support, the basis
functions for the DWT have increasing support at coarser scales.
Also, the basis functions on the same scale are merely shifts of
one another. By grouping the coefficients according to scales and
relabeling them, we can rewrite equation (7) as

Y =

JX
j=1

N

2j
�1X

i=0

cj;iWj;i +

N

2J
�1X

i=0

dJ;iSJ;i; (8)

wherej is used for scale, andi is used for position within the
scale,J is the total number of scales of decomposition. Although
equation (8) has more detail information and is more widely used,
equation (7) is a more convenient representation for our purpose.
Clearly, the idea of MIDCT leads us from equation (7) to the fol-
lowing key equation for the mapped IDWT,

Y =
X
i:ci 6=0

ciBi: (9)

If the number of non-zero coefficients are small, equation (9)
yields an efficient algorithm obviously. Also, if the basis func-
tions have duplicated values, we can further reduce the number of
operations by only performing multiplication with the unique val-
ues. This allows us to cut the number of multiplications by half for
those symmetrical wavelets often used for image compression.

The number of operations per coefficient is proportional to the
length of the corresponding basis function. For DCT, the length
is fixed,8 for 1D, and64 for 2D. But for DWT, the length of the
basis functions gets longer as the scales get coarser. Letlen(C)
denote the length of the vectorC. Equations (5) and (6) imply,

len(Sj+1) = 2len(Sj) + len(h)� 2; (10)

len(Wj+1) = 2len(Wj) + len(g)� 2; (11)

with
len(S1) = len(h); len(W1) = len(g): (12)

So the length of the basis function approximately doubles at each
increasing scale. Thus the worst case complexity of the MIDWT,
when all the coefficients are non-zero, isO(JN).

4. PROGRESSIVE MAPPED IDWT

For embedded compression algorithms [10, 9], the wavelet coeffi-
cients are coded and transmitted from the most significant bitplane
to the least significant bitplane, so we can reconstruct data from
coarse to fine resolution as more and more parts of the compressed
bit stream are available. Letsi be the sign ofci, andpi;k be the bit
value (either 0 or 1) ofci on thekth bitplane, we can writeci as

ci;K = si

K�1X
k=0

pi;k
q

2k
; (13)



whereq is the reconstruction level for the most significant bitplane,
andK is the total number of bitplanes. The reconstructed signal
using the firstK bitplanes is

YK =

N�1X
i=0

ci;KBi =

N�1X
i=0

si

K�1X
k=0

pi;k
q

2k
Bi: (14)

LetZK be the refinement for going from bitplaneK toK+1, i.e.

ZK = YK+1 �YK =

N�1X
i=0

si pi;K
q

2K
Bi: (15)

Again, only non-zeropi;K need to be kept, so

ZK =
X

i:pi;K 6=0

si pi;K
q

2K
Bi: (16)

Since the value ofq is always transmitted first, we can per-calculate
the basis functions at each bitplane as

Bi;K =
q

2K
Bi: (17)

They only need to be calculated once per scale and per bitplane.
Since the basis function at lower bitplane is half of that at the next
higher bitplane, it can be calculated from the basis function at the
higher bitplane very efficiently by right shifting for the fix point
implementation, or by reducing the exponents for floating point
implementation. Also, sincepi;K is either 0 or 1, we can simplify
equation (16) as

ZK =
X

i:pi;K=1

si Bi;K (18)

=
X

i:si=1; pi;K=1

Bi;K �
X

i:si=�1; pi;K=1

Bi;K : (19)

Thus we avoid any multiplications for the run-time progressive
MIDWT. Note thatpi;K is the bit value of the coefficientci at
bitplaneK, even ifci has non-zero bit at bitplane higher thanK,
pi;K could still be zero, thus leads to operation reduction.

5. EXAMPLE

We compare the complexity of the traditional IDWT, the MIDWT
and the progressive MIDWT for the two signals shown in figure
(2). Figure (3a) shows that the percentage of non-zero coefficients
is small and increases as the number of bitplanes increases. Our
MIDWT outperforms the traditional IDWT when the number of
bitplanes is small, as shown in figure (3b). Since the numbers
of multiplications and additions are similar, we only show one of
them in the plots. For progressive decompression, the percentage
of non-zero bits for each bitplane is shown in figure (4a). The
percentages are also small but are not necessarily monotonously
increasing. Our progressive MIDWT does not require any mul-
tiplication, and the numbers of additions needed to progressively
decompress data based on all the previous bitplanes are shown in
figure (4b). Much smaller number of operations is achieved over
the traditional IDWT, which requires similar number of multipli-
cations as additions. Hence, our progressive MIDWT is highly
efficient.
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Figure 2: Test signals.

6. SUMMARY AND DISCUSSION

In this paper, we propose a mapped realization of the inverse dis-
crete wavelet transform that takes advantage of the large number
of zero wavelet coefficients often generated by quantization. The
complexity of our algorithm is proportional to the number of non-
zero coefficients, and experiments show that it significantly re-
duces the number of operations when reconstructing from sparse
coefficients. Thus our algorithm is especially suitable for decom-
pression of natural signals. We also generalize our algorithm to
progressive decompression so that unnecessary computations cor-
responding to zero-value coefficients are avoided at every resolu-
tion and no multiplication operation is required at run-time. Exam-
ples confirm the efficiency of our algorithms. Our algorithm easily
generalizes to separable 2D DWT in the row-column fashion. It is
also possible to formulate direct 2D mapping as done for DCT [6].

The usual IDWT has the tree structure [5], and equation (9)
corresponds to flattening the tree. The basic idea for MIDCT and
MIDWT can be directly applied to the tree structure, since the con-
volution is nothing but a weighted summation. Thus, we can guar-
antee the complexity to be less than that of the standard implemen-
tation. Furthermore, we can combine our mapped idea with other
efficient IDWT implementation, such as the lattice structure [12]
and the ladder/lifting structure [11] to further reduce the complex-
ity.
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Figure 3: (a) The percentage of non-zero coefficients increases as
the number of bitplanes increases. (b) Comparison of the number
of operations for traditional IDWT and the MIDWT for the test
signals.
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