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ABSTRACT 2. INDEPENDENT COMPONENT ANALYSIS

This discussion paper proposes to generalize the notion of Inde-

pendent Component Analysis (ICA) to the notionhdiltidimen- In the literature, the terms ‘blind source separation’ and ‘indepen-

. . dent component analysis’ [1] are often used indifferently: they re-
sional Independent Component Analysis (MICA). We start from fer to theiame modeyl (1) [vv]ith the same assumptions,ypursa/e the

the lEA Or.b“n? s_gur(ﬁ_ sgparat_lgnd(l?»tS_S) modell and ShOV\t’ thatc;t same objectives and are addressed with the same algorithms. This
can be uniquely ldentified provided It 1S properly paramelerzed ;o o s rce of confusion and a ‘waste of terminologyft is also
in terms of one-dimensional subspaces. From this standpoint, the

BSS/ICA model i lized t ltidi ional t unfortunate because the term ‘analysis’ refers to the idea of de-
We discusrg(r)mSv l'égi?;;ﬁ;g al Oor:;tﬁn;szae:?gg%ac?ijt%n&Tcs}; composition into smaller, simpler elements and very often this de-
decomposition. The relevance %f these ideas is illﬁstrated by acomposition IS into a sum of terms, calling for an additive model
MICA decomposition of ECG signals. rather than a multiplicative as described by eq. (1).
ICA as an additive model. We claim that an interesting reformu-
1. BLIND SOURCE SEPARATION lation of the basic ICA model is obtained by defining the ‘compo-
’ , def
nents’ asx, = a, s, for1 < p < n so that model (1) can be

We start by considering the blind source separation (BSS) problemrewritten as an additve, component-based, model:
in the simplest model: anx 1 vector of observations is modeled

as
x=As, with A=[as,... a0 1) x=3 x )

wheres is an x 1 vector withstatistically independemiomponents =l
and matrixA is ann x n invertible matrix. The entries of = This (admittedly trivial) rewriting of the original model calls for a
[s1,...,5,]" are referred to as the ‘source signals’. For the sake change of standpoint. While model (1) is a multiplicative model
of simplicity, the discussion is restricted throughout to the case of reading:the observed vector is the the product of a mixing matrix
zero-mean real signals. A by a source vectos, model (2) is an additive model reading:

The source separation problem may be statettesttify mix- the observed vector is a sum nfone-dimensional independent
ing matrix A and/or estimate the source signals based only on vectorsxy, ..., x,.
observations ok and assuming only i) statistical independence of This point of view is closer to the classic (and closely re-
the ‘sources’ and ii) linear independence of the columnd ofhe lated) Principal Component Analysis (PCA) technique. PCA pro-

strength of this model is that the two independence assumptionsvides adecompositiof a second-order vecter as the sum of its
stated above are physically plausible in several instances and argprojections onto the principal axis of its covariance matrix. The
strong enough to provide some kind of identifiability (see below), PCA components are geometrically orthogonal by construction
thus alleviating the need of any further modeling of the source dis- and also statistically orthogonal (uncorrelated). The more ambi-
tributions or of the mixing matrix. tious ICA approach is to look for components which are not nec-
essarily geometrically orthogonal but are statistically independent
(that is ‘more than statistically orthogonal’ since independence is
much stronger than mere uncorrelation).

Indeterminacies. The source separation problem as stated above
is clearly undetermined: if nothing is known a priori neither about
the amplitude of a particular soureg nor about the amplitude
of the corresponding column of, then a scalar factor can be ex- A geometric parameterization. The new view of ICA intro-
changed betwees), anda,, without changing the producé, s, = duced above is ‘matrix-free’. In this section, we discuss how it
(aap) (a's,) for any reaky # 0. Also we note that the ordering  can be parameterized and why the appropriate parameterization is
of the source signals is immaterial and is nothing but a notational uniquely determined contrarily to the matrix-based parameteriza-
device. Thus, in complete ignorance of the source distributions, tion of model (1).
source signals can be recovered at best up to a permutation, scales In the component model (2), the smallest subspace containing
and signs. thepth component is referred to as the ‘component (sub)space’ for
These indeterminations are well known and have been dis- thepth component. This is indeed the one-dimensional linear sub-
cussed at length in the blind source separation literature. Theyspace spanned by tipgh column of A. The orthogonal projector
could be crudely expressed as: ‘under the working assumptions,onto this subspace is denotHg and can be obtained as
the mixing matrix4 does not existWe now discuss what quanti-
ties can be truly determined from the distributionxoin the BSS
model.

1<p<n. (3)



The knowledge of the projectof$, for p =1, ..., n is of course
sufficient for separating the components: it is easily verified that

n #
(Z Hq> @)

because matrif[p is the projector onto thg-th component space
orthogonally to all the other components. In (4), supersc#pt

def

x, = [I,x with II, = II,

Aq,..., Ac bec matrices of sizes x ni,...,n X n., such that
A = [A1,...,Ac] is full column rank. Then, vectors ad-
mits of a MICA decomposition onto the spades, . . ., E. where
E, = Span(A4,) for 1 < p < ¢. The orthogonal projector onto
E,isIly,... I
I, = AP(A;AP)_IA;FN

1<p<c )

which is the multidimensional equivalent of (3) while eq. (4) holds

denotes pseudo-inversion (we could use a regular inverse here buts is’ in the multidimensional case. The corresponding MICA

a pseudo-inverse is required below).

For the sake of consistency. to get rid of the modeling in
terms of mixing matrix, it is desirable to define the projedity
explicitly in terms of the componemt, rather than as a function of
a,. This can be done for instance Hs = (E|x,|*) 'E{x}x,}
if x,, has finite variance or by a similar trick otherwise.

components are, = Aps, for1 < p < ¢ indeed. The very
same components are also obtainestas= (4,C,)(C, 's,) for

any invertiblen, x n, matrix C;,. Therefore, in the MICA set-
ting, indeterminations appear more severe than in the ICA setting:
the n,-dimensional source vectay, is determined only up to an
invertiblen, x n, matrix factor.

By focusing on the spaces containing to each component ratherMinimal parameterization. If a matrix is determined up to right

than on the columns oA, we obtain the desired result of getting rid

multiplication by an arbitrary invertible factor, only its column

of the indeterminations of scale and sign. In some sense, we movespace is determined. Therefore, the appropriate parameterization

from analgebraicdescription of a mixture in terms of a ‘mixing
matrix’ to ageometriadescription in terms of ‘component spaces’.

The global ‘parameter of interest’ in model (2) is not the mix-
ing matrix but the set

P = (I,...,I0,)

of the orthogonal projection matrices onto each of the compo-

nent spaces. The last step to removing indeterminacies in the ICA

model is maybe only rhetorical: itis easily seen tietunordered
setP is uniquelydetermined whenever matrikis determined up

to scale, sign and column ordeEquivalently, if matrixA is iden-
tifiable up to the above-mentioned indeterminacies of scale, sign
and order, therP is uniquely identifiable and, knowin@, the
(unordered) set of independent componefts, . . ., x, } can be
uniquely recovered via (4).

In summary, we have completed the reparameterization of the
standard ICA model into a ‘component model’ which is geomet-
ric in spirit and free of indeterminacies. More importantly, this
new perspective suggests an extension to a more general model
multidimensional independent components.

3. MULTIDIMENSIONAL INDEPENDENT COMPONENT
ANALYSIS

The geometrical description of ICA discussed in the previous sec-
tion offers a simple way to generalize ICA into multidimensional
ICA (MICA).

Definition. LetE:,..., E. bec linear subspaces dR". They
are said to bdinearly independerif any vectorx of E1 &- - - @ E.
admits of auniquedecomposition ag = Z;zl xp Withx,, € E,
for1 < p < ec. In such a case, the vectaxs, . . ., x. are called
thelinear componentsf x on the set,, . .., E..

Definition 1. A randomn-dimensional vectox admits of a MICA
decompositio{x1, . .., x.} in c components if it existslinearly

independent ‘component subspacgs’,. .., E, of R™ on which
the linear components of are statisticallyindependent.

To illustrate the definition, let us consider it in a matrix-vector
style. Letsi,...,s. bec statistically independent random vec-

tors with dimensions:;, ..., n. and lets = [s|,... si]f. Let

of a MICA decomposition is in terms of the subspaces on which
the components are obtained. This is the reason why we directly
define above a MICA decomposition in terms of component sub-
spaces. Algebraically, the component subspaces are in one-to-one
correspondence with the orthogonal projectors onto them. There-
fore a MICA decomposition may be defined by specifying an (un-
ordered) set of linearly independent component subspaces . , E.

or, equivalently, an (unordered) set= (Il,...,II.) of orthog-

onal projectors onto these subspaces. Again, given the parameter
P, the components are uniquely determined frowia (4).

Before addressing some uniqueness issues, the case when the
dimensions of the components is too large must be addressed. A
given MICA decompositiof x1, . . ., x.} may be obtained by dif-
ferent sets of projectors (or subspaces) it E;zl dim(E,) i.e.
if the random vectox does not ‘fill in the whole space’. In this
case, it exists a least one fixed (deterministic) vecatavith unit
norm such thaixx = 0 and any component subspace, $ay
can be inflated t&; = E; ® Span(u) (or, equivalentlyI; can

Jpe changed tdl; = IT; +uu’). We stress that this operation does

not affect the MICA decompositiofixi, . . ., x.} itselfi.e. all the
componentxi, ..., X. remain unchanged whef,; is increased
into £,. In order to fix this indetermination, we require that the
parameterP = (IIi,...,II.) associated to a given MICA de-
composition{xi, ..., x.} be minimal in the sense that, for all
subspace, should have the smallest dimensionality required to
accommodate componegry},. For instance, ik, have finite sec-
ond order moments, thed, should be the orthogonal projector
onto the range of the covariance matrixsof

Invariance. MICA decompositions are invariant in the following
sense: itk € R™ admits of a MICA decomposition in compo-
nents{xi,...,x.} and M is anm x n matrix with full column
rank then the random vectgr= Mx € R™ admits of a MICA
decomposition inte componenty1 = Mxi,...,y. = Mx.}.
This is an obvious property: the componedtschange under the
linear transform; however they undergo the same transform as the
original variablex (the term ‘covariance’ is therefore more appro-
priate than ‘invariance’ but often used with a different meaning ).
Note in the passing that principal component analysisois
invariant in the above sense because it leads components which
are always orthogonal (PCA is at best invariant under orthogonal
transformations).



Canonical MICA. Some care is required to uniquely define a stationary points are characterized By (Bx) = 0 while off-
MICA decomposition: definition 1 is not sufficient in this respect line algorithms based ofi samples are (possibly only asymptoti-
as discussed in the next two items. cally) equivalent to estimating a mixing matrik as a solution of

. o . . 1/T Zthl H(A’lx(t)) = 0. Typically, function H has one of
i) Maximality of the decomposition. Assume (for instance) that e two forms

a random vectok admits of a MICA decomposition in three com-

ponents{xi,x2,x3}. Then, according to the above definition Hy(y) = o(y)y —1I (6)

of MICA, it also admits of another (coarser) decomposition in o _ t + T

two componentsx; + x2,x3}. This decomposition is ‘weaker’ Hy(y) = yy' =I+0{)y" = y¥(y) )
than the decomposition in three components. Actually the coarsesiyherey : R® — R” is an entry-wise function:[y)(y)]; =
MICA decomposition compatible with definition 1 is just to take 4, (y;). The general form of defs. (6) and (7) can be derived from
x = x i.e.x has one component: itself!) Therefore, in order to a maximum likelihood approach in which functignis minus the
avoid trivialities, a MICA decomposition should be requested to derivative of the log-density af. Assuming independent entries in
break a vector into as many independent components as possibles yields the entry-wise form af, which is specific of the BSS/ICA

model.*
ii) The Gaussian component. There is a difficulty if the result Assume thatx follows the MICA model (2) withe compo-
of breaking down a random vector into the largest possible nUM- ot of dimensionsy; . ... . n. assuming for simplicityn; +

ber of independent components brings up more than one Gaus- + ne = n. The question is: is there at least one matix
sian component. Actually if a given component, say, of a such thatEH (Bx) = 0 and such that basis fd., . .., E. can
MICA det_:omposition is normally distribu_tealnd has_dimension be be obtained by selecting appropriate cqumnB,(’)f’.; Itis not

m > 1,0t can always be decomposed into one-dlmensm_nal_ difficult to show that under simple assumptions, this is indeed the
normally distributed sub-components, for instance by projecting case at least for estimating functions of the form (6) or (7). In
x, onto the firsta, principal axis of its covariance matrix. HOW-  his case, an ICA algorithm which finds this stationary point has
ever such a procedure would not yield an invariant decomposition successfully completed stéjin presence of multidimensional in-
because such sub-components are _ortho_gonal by construction (Se&ependent components. In other words, some ICA algorithms do
the above remark about the lack of invariance of PCA). One may 46 stationary points which are solution of the MICA problem in
think of other ways of decomposing a Gaussian vector into in- e tywo-step approach outlined above. The next open question is to

dependent components but it does not seem possible to define etermine in a general setting the conditions for stability of these
decomposition that would be invariant. In consequence, a Spec'alstationary points.

treatment is reserved to Gaussian components: they shotite
split into independent subcomponents but rather all the Gaussian
components (if any) should be kept pieced together as a unique
component.

We may now define a canonical MICA decomposition of a
random vector.

5. ILLUSTRATION: FETAL ECG

We illustrate the MICA decomposition on the case of fetal ECG.
We use a data set [3] @ = 2500 ECG points sampled at 500 Hz
with 3 electrodes located on the abdomen of a pregnant woman.
The first second of signal is displayed in the first column of fig. 1.
As stepi), we run the JADE algorithm [4], yielding (in about 500 K
flops) this estimate of & x 3 mixing matrix:

Definition 2 The canonical MICA decomposition (if it exists) of a
vectorx is the unique MICA decompositionofntox = Z;zl Xp
such that i) there is at most one Gaussian component and ii) no
non-Gaussian component can be further decomposed into inde- N o 3.481  -4.508  7.506
pendent components. A=lan 8, a5] % | Lz enar o1 | (8)
Applying A~! to the observations yields an estimate of 3 source

4. ICAFOR MICA signals which are displayed in the second column. Sjejs

here trivial to the human eye: the cardiac rhythms in the second

An ICA algorithm could be used for estimating a MICA decom- column reveal that the algorithm has extracted one source signal
position by proceeding in two stepg: run an ICA algorithm to  coming from the fetus heart and two ‘source signals’ coming from
obtain estimates of monodimensional source signals or an estimatéhe mother heart. Therefore, this data set seems well modeled by
of a mixing matrixii) determine which source signals actually are a MICA decomposition into one monodimensional (fetus) com-
independent and which should be grouped together as parts of gonent and one bi-dimensional component (mother). Since the

multidimensional component because they turnrmito be inde- fetus signal clearly appears first in the second column, the or-
pendent (see sec. 5 for an example) or because they are parts of thgiogonal projection matrix on the fetus subspace is estimated by
Gaussian component. II; = |ai|~%a:al and the orthogonal projection matri%,, on

Letting aside the possibly non trivial task of performing step  to the mother subspace is estimated as the orthogonal projection
it is important to determine how ICA algorithms designed to ex- matrix onto the column space [, a3]:
tract one-dimensional components behave when processing a mix-

ture of multidimensional independent componérgso whichex-  TI,, a | 017  osr 028 |,IT, & ‘ 021 007 014

tent they are able to perform stegrhis is briefly examined below. 0-58  —0.28 0.3 Toas —0d4 030

_ Many |CA_ algorithms are based, exp_licit_ly or not, on an es- 1An extension of the ML approach to the MICA problem would be
timating functionH : R" — R™ ™ satisfyingEH(s) = 0 to usec non-linear functiong), : R +— R™ and definey(y) =

when the entries of (possibly scaled) are independent [2]. On- [y, (y1)t, ..., ¢e(yc)T]t wherey = [YL ...,yi]t is a split of vectory
line algorithms update a separating matBxin such a way that into ¢ parts of sizenq, na, ..., ne.



Using eq. (4) (or other equivalent but simpler expressions) yields [3] De Moor B.L.R. (ed.), “Daisy: Database for the identification
of systems.” http://www.esat.kuleuven.ac.be/sista/daisy, Oct.

~ 0.47 0.30  0.88 ~ 0.53 -0.39 -—0.88
II,, ~ | -o0.18 1.13 020 | Il = 0.18 —0.13  —0.29 1997.
0.36 —0.27  0.40 —0.36  0.27 0.60

which allow to reconstruct a mother-only bidimensional compo- [4] J.-F. Cardoso and A. Souloumiac, *Blind beamforming for

nentx,, = IT,,x whose 3 entries are displayed in the third column g?g GD%L(J:ssllgg;lgnalleE Proceedings-Fvol. 140, pp. 362—
and a fetus-only monodimensional component= II;x whose ' ' '

3 entries are displayed in the last column. The same scale is used®] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “Fetal elec-
for each row of the figure in columns 1, 3 and 4 since vectoss,, trocardiogram extraction by source subspace separation,” in
andx; all live in the same space; the scale in the second column ~ Proc. HOS'95 (Aiguablava, Spain), pp. 134-8, June 1995.

which represents vectar is arbitrary: it isconventionallydeter- [6] E. Bacharakis, A. Nandi, and V. Zarzoso, “Foetal ECG ex-

mined by the JADE algorithm in such a way that the three entries traction using blind source Separation method,’PmC_ EU-
of s have unit variance. Let us discuss these results. S|PCQ (Trieste), 1996.
[ |

1) Afirstimportant point is that fetal ECG extraction is possible by =
a BSS technique. This is important but only marginally related to o
our discussion. Similar successes have already been reported [5, 6]
(better separation results are obtained with JADE when using the
whole original data set in which 8 sensor outputs are available; the
results presented herein are based only on the first 3 sensors due
to lack of space and also because we only mean to illustrate the
concept of MICA).

2) It is not possible to directly compare estimate (8) obtained by
JADE to estimates ofd obtained by other methods because, as
already argued, matrixl has no real existence in the BSS/ICA
model; only the projectorH.,, andIl; (or functions of them) can

be estimated unambiguously from the data in the MICA context. |
Similarly, the ‘mother source signals’ (rows 2 and 3 of the second B
column on the figure) hava priori no significance. Only the re-
constructed mother signal,, (third column of the figure) can be
significantly compared to another,, estimated with another ICA
algorithm.
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6. CONCLUSIONS

sreubis 22i1n0s

By reconsidering the notion of ICA, a more general perspective
can be envisioned: multidimensional independent component anal-
ysis (MICA). It is based on a geometric parameterization which is
free of the indeterminacies of matrix-based modeling. MICA re-
lies on the idea of vector-valued component rather than on scalar
‘source signals’. A canonical MICA decomposition is proposed as
an invariant decomposition which can be empirically computed by
post-processing the results of an ICA decomposition. This calls
for further research on developing tools for detecting the existence
of independent components in the ICA/MICA context.
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[1] P. Comon, “Independent component analysis, a new con-
cept ?,” Signal Processing, Elsevierol. 36, pp. 287-314,
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Reproducible research.Inspired by the principle of Reproducible
Research, we make the Matlab code used to produce the ECG fig-
ure freely available upon request or at
http://sig.enst.fr-cardoso/RRicassp98.html.
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