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ABSTRACT

This discussion paper proposes to generalize the notion of Inde-
pendent Component Analysis (ICA) to the notion ofMultidimen-
sional Independent Component Analysis (MICA). We start from
the ICA or blind source separation (BSS) model and show that it
can be uniquely identified provided it is properly parameterized
in terms of one-dimensional subspaces. From this standpoint, the
BSS/ICA model is generalized to multidimensional components.
We discuss how ICA standard algorithms can be adapted to MICA
decomposition. The relevance of these ideas is illustrated by a
MICA decomposition of ECG signals.

1. BLIND SOURCE SEPARATION

We start by considering the blind source separation (BSS) problem
in the simplest model: ann�1 vector of observationsx is modeled
as

x = As; with A = [a1; : : : ; an] (1)

wheres is an�1 vector withstatistically independentcomponents
and matrixA is ann � n invertible matrix. The entries ofs =
[s1; : : : ; sn]

y are referred to as the ‘source signals’. For the sake
of simplicity, the discussion is restricted throughout to the case of
zero-mean real signals.

The source separation problem may be stated as:Identify mix-
ing matrixA and/or estimate the source signals based only on
observations ofx and assuming only i) statistical independence of
the ‘sources’ and ii) linear independence of the columns ofA. The
strength of this model is that the two independence assumptions
stated above are physically plausible in several instances and are
strong enough to provide some kind of identifiability (see below),
thus alleviating the need of any further modeling of the source dis-
tributions or of the mixing matrix.

Indeterminacies. The source separation problem as stated above
is clearly undetermined: if nothing is known a priori neither about
the amplitude of a particular sourcesp nor about the amplitude
of the corresponding column ofA, then a scalar factor can be ex-
changed betweensp andap without changing the product:apsp =
(�ap) (�

�1sp) for any real� 6= 0. Also we note that the ordering
of the source signals is immaterial and is nothing but a notational
device. Thus, in complete ignorance of the source distributions,
source signals can be recovered at best up to a permutation, scales
and signs.

These indeterminations are well known and have been dis-
cussed at length in the blind source separation literature. They
could be crudely expressed as: ‘under the working assumptions,
the mixing matrixA does not exist.’ We now discuss what quanti-
ties can be truly determined from the distribution ofx in the BSS
model.

2. INDEPENDENT COMPONENT ANALYSIS

In the literature, the terms ‘blind source separation’ and ‘indepen-
dent component analysis’ [1] are often used indifferently: they re-
fer to the same model (1) with the same assumptions, pursue the
same objectives and are addressed with the same algorithms. This
is a source of confusion and a ‘waste of terminology’. . . It is also
unfortunate because the term ‘analysis’ refers to the idea of de-
composition into smaller, simpler elements and very often this de-
composition is into a sum of terms, calling for an additive model
rather than a multiplicative as described by eq. (1).

ICA as an additive model.We claim that an interesting reformu-
lation of the basic ICA model is obtained by defining the ‘compo-

nents’ asxp
def
= ap sp for 1 � p � n so that model (1) can be

rewritten as an additve, component-based, model:

x =

nX
p=1

xp (2)

This (admittedly trivial) rewriting of the original model calls for a
change of standpoint. While model (1) is a multiplicative model
reading:the observed vector is the the product of a mixing matrix
A by a source vectors, model (2) is an additive model reading:
the observed vector is a sum ofn one-dimensional independent
vectorsx1; : : : ;xn.

This point of view is closer to the classic (and closely re-
lated) Principal Component Analysis (PCA) technique. PCA pro-
vides adecompositionof a second-order vectorx as the sum of its
projections onto the principal axis of its covariance matrix. The
PCA components are geometrically orthogonal by construction
and also statistically orthogonal (uncorrelated). The more ambi-
tious ICA approach is to look for components which are not nec-
essarily geometrically orthogonal but are statistically independent
(that is ‘more than statistically orthogonal’ since independence is
much stronger than mere uncorrelation).

A geometric parameterization. The new view of ICA intro-
duced above is ‘matrix-free’. In this section, we discuss how it
can be parameterized and why the appropriate parameterization is
uniquely determined contrarily to the matrix-based parameteriza-
tion of model (1).

In the component model (2), the smallest subspace containing
thepth component is referred to as the ‘component (sub)space’ for
thepth component. This is indeed the one-dimensional linear sub-
space spanned by thepth column ofA. The orthogonal projector
onto this subspace is denoted�p and can be obtained as

�p
def
=

apa
y
p

a
y
pap

; 1 � p � n: (3)



The knowledge of the projectors�p for p = 1; : : : ; n is of course
sufficient for separating the components: it is easily verified that

xp = ~�px with ~�p
def
= �p

 
nX
q=1

�q

!#

(4)

because matrix~�p is the projector onto thep-th component space
orthogonally to all the other components. In (4), superscript#
denotes pseudo-inversion (we could use a regular inverse here but
a pseudo-inverse is required below).

For the sake of consistencyi.e. to get rid of the modeling in
terms of mixing matrix, it is desirable to define the projector�p
explicitly in terms of the componentxp rather than as a function of
ap. This can be done for instance as�p = (Ejxpj

2)�1Efxypxpg
if xp has finite variance or by a similar trick otherwise.

By focusing on the spaces containing to each component rather
than on the columns ofA, we obtain the desired result of getting rid
of the indeterminations of scale and sign. In some sense, we move
from analgebraicdescription of a mixture in terms of a ‘mixing
matrix’ to ageometricdescription in terms of ‘component spaces’.

The global ‘parameter of interest’ in model (2) is not the mix-
ing matrix but the set

P = (�1; : : : ;�n)

of the orthogonal projection matrices onto each of the compo-
nent spaces. The last step to removing indeterminacies in the ICA
model is maybe only rhetorical: it is easily seen thattheunordered
setP is uniquelydetermined whenever matrixA is determined up
to scale, sign and column order. Equivalently, if matrixA is iden-
tifiable up to the above-mentioned indeterminacies of scale, sign
and order, thenP is uniquely identifiable and, knowingP, the
(unordered) set of independent componentsfx1; : : : ;xng can be
uniquely recovered via (4).

In summary, we have completed the reparameterization of the
standard ICA model into a ‘component model’ which is geomet-
ric in spirit and free of indeterminacies. More importantly, this
new perspective suggests an extension to a more general model of
multidimensional independent components.

3. MULTIDIMENSIONAL INDEPENDENT COMPONENT
ANALYSIS

The geometrical description of ICA discussed in the previous sec-
tion offers a simple way to generalize ICA into multidimensional
ICA (MICA).

Definition. LetE1; : : : ; Ec be c linear subspaces ofRn. They
are said to belinearly independentif any vectorx ofE1�� � ��Ec
admits of auniquedecomposition asx =

Pc

p=1
xp withxp 2 Ep

for 1 � p � c. In such a case, the vectorsx1; : : : ;xc are called
the linear componentsof x on the setE1; : : : ; Ec.

Definition 1. A randomn-dimensional vectorx admits of a MICA
decompositionfx1; : : : ;xcg in c components if it existsc linearly
independent ‘component subspaces’E1; : : : ; En ofRn on which
the linear components ofx arestatisticallyindependent.

To illustrate the definition, let us consider it in a matrix-vector
style. Lets1; : : : ; sc be c statistically independent random vec-
tors with dimensionsn1; : : : ; nc and lets = [sy1; : : : ; s

y
c]
y. Let

A1; : : : ; Ac bec matrices of sizesn � n1; : : : ; n � nc, such that
A = [A1; : : : ; Ac] is full column rank. Then, vectorAs ad-
mits of a MICA decomposition onto the spacesE1; : : : ; Ec where
Ep = Span(Ap) for 1 � p � c. The orthogonal projector onto
Ep is�1; : : : ;�c:

�p = Ap(A
y
pAp)

�1Ayp; 1 � p � c (5)

which is the multidimensional equivalent of (3) while eq. (4) holds
‘as is’ in the multidimensional case. The corresponding MICA
components arexp = Apsp for 1 � p � c indeed. The very
same components are also obtained asxp = (ApCp)(C

�1
p sp) for

any invertiblenp � np matrixCp. Therefore, in the MICA set-
ting, indeterminations appear more severe than in the ICA setting:
thenp-dimensional source vectorsp is determined only up to an
invertiblenp � np matrix factor.

Minimal parameterization. If a matrix is determined up to right
multiplication by an arbitrary invertible factor, only its column
space is determined. Therefore, the appropriate parameterization
of a MICA decomposition is in terms of the subspaces on which
the components are obtained. This is the reason why we directly
define above a MICA decomposition in terms of component sub-
spaces. Algebraically, the component subspaces are in one-to-one
correspondence with the orthogonal projectors onto them. There-
fore a MICA decomposition may be defined by specifying an (un-
ordered) set of linearly independent component subspacesE1; : : : ; Ec
or, equivalently, an (unordered) setP = (�1; : : : ;�c) of orthog-
onal projectors onto these subspaces. Again, given the parameter
P, the components are uniquely determined fromx via (4).

Before addressing some uniqueness issues, the case when the
dimensions of the components is too large must be addressed. A
given MICA decompositionfx1; : : : ;xcgmay be obtained by dif-
ferent sets of projectors (or subspaces) ifn >

Pc

p=1
dim(Ep) i.e.

if the random vectorx does not ‘fill in the whole space’. In this
case, it exists a least one fixed (deterministic) vectoru with unit
norm such thatuyx = 0 and any component subspace, sayE1,
can be inflated to�E1 = E1 � Span(u) (or, equivalently,�1 can
be changed to��1 = �1+uu

y). We stress that this operation does
not affect the MICA decompositionfx1; : : : ;xcg itself i.e.all the
componentsx1; : : : ;xc remain unchanged whenE1 is increased
into �E1. In order to fix this indetermination, we require that the
parameterP = (�1; : : : ;�c) associated to a given MICA de-
compositionfx1; : : : ;xcg be minimal in the sense that, for allp,
subspaceEp should have the smallest dimensionality required to
accommodate componentxp. For instance, ifxp have finite sec-
ond order moments, then�p should be the orthogonal projector
onto the range of the covariance matrix ofx.

Invariance. MICA decompositions are invariant in the following
sense: ifx 2 Rn admits of a MICA decomposition inc compo-
nentsfx1; : : : ;xcg andM is anm � n matrix with full column
rank then the random vectory = Mx 2 Rm admits of a MICA
decomposition intoc componentsfy1 =Mx1; : : : ;yc =Mxcg.
This is an obvious property: the componentsdo change under the
linear transform; however they undergo the same transform as the
original variablex (the term ‘covariance’ is therefore more appro-
priate than ‘invariance’ but often used with a different meaning ).

Note in the passing that principal component analysis isnot
invariant in the above sense because it leads components which
are always orthogonal (PCA is at best invariant under orthogonal
transformations).



Canonical MICA. Some care is required to uniquely define a
MICA decomposition: definition 1 is not sufficient in this respect
as discussed in the next two items.

i) Maximality of the decomposition. Assume (for instance) that
a random vectorx admits of a MICA decomposition in three com-
ponentsfx1;x2;x3g. Then, according to the above definition
of MICA, it also admits of another (coarser) decomposition in
two componentsfx1 + x2;x3g. This decomposition is ‘weaker’
than the decomposition in three components. Actually the coarsest
MICA decomposition compatible with definition 1 is just to take
x = x i.e. x has one component: itself!) Therefore, in order to
avoid trivialities, a MICA decomposition should be requested to
break a vector into as many independent components as possible.

ii) The Gaussian component.There is a difficulty if the result
of breaking down a random vector into the largest possible num-
ber of independent components brings up more than one Gaus-
sian component. Actually if a given component, sayx1, of a
MICA decomposition is normally distributedand has dimension
n1 > 1, it can always be decomposed inton1 one-dimensional
normally distributed sub-components, for instance by projecting
x1 onto the firstn1 principal axis of its covariance matrix. How-
ever such a procedure would not yield an invariant decomposition
because such sub-components are orthogonal by construction (see
the above remark about the lack of invariance of PCA). One may
think of other ways of decomposing a Gaussian vector into in-
dependent components but it does not seem possible to define a
decomposition that would be invariant. In consequence, a special
treatment is reserved to Gaussian components: they shouldnot be
split into independent subcomponents but rather all the Gaussian
components (if any) should be kept pieced together as a unique
component.

We may now define a canonical MICA decomposition of a
random vector.

Definition 2 The canonical MICA decomposition (if it exists) of a
vectorx is the unique MICA decomposition ofx intox =

Pc

p=1
xp

such that i) there is at most one Gaussian component and ii) no
non-Gaussian component can be further decomposed into inde-
pendent components.

4. ICA FOR MICA

An ICA algorithm could be used for estimating a MICA decom-
position by proceeding in two steps:i) run an ICA algorithm to
obtain estimates of monodimensional source signals or an estimate
of a mixing matrixii) determine which source signals actually are
independent and which should be grouped together as parts of a
multidimensional component because they turn outnot to be inde-
pendent (see sec. 5 for an example) or because they are parts of the
Gaussian component.

Letting aside the possibly non trivial task of performing stepii ,
it is important to determine how ICA algorithms designed to ex-
tract one-dimensional components behave when processing a mix-
ture of multidimensional independent componentsi.e. to which ex-
tent they are able to perform stepi. This is briefly examined below.

Many ICA algorithms are based, explicitly or not, on an es-
timating functionH : Rn 7! Rn�n satisfyingEH(s) = 0
when the entries ofs (possibly scaled) are independent [2]. On-
line algorithms update a separating matrixB in such a way that

stationary points are characterized byEH(Bx) = 0 while off-
line algorithms based onT samples are (possibly only asymptoti-
cally) equivalent to estimating a mixing matrixA as a solution of
1=T

PT

t=1
H(A�1x(t)) = 0. Typically, functionH has one of

the two forms

H (y) =  (y)yy � I (6)

H�
 (y) = yy

y � I +  (y)yy � y (y)y (7)

where : Rn 7! Rn is an entry-wise function:[ (y)]i =
 i(yi). The general form of defs. (6) and (7) can be derived from
a maximum likelihood approach in which function is minus the
derivative of the log-density ofs. Assuming independent entries in
s yields the entry-wise form of , which is specific of the BSS/ICA
model.1

Assume thatx follows the MICA model (2) withc compo-
nents of dimensionsn1; : : : ; nc, assuming for simplicityn1 +
� � � + nc = n. The question is: is there at least one matrixB
such thatEH(Bx) = 0 and such that basis forE1; : : : ; Ec can
be be obtained by selecting appropriate columns ofB�1? It is not
difficult to show that under simple assumptions, this is indeed the
case, at least for estimating functions of the form (6) or (7). In
this case, an ICA algorithm which finds this stationary point has
successfully completed stepi in presence of multidimensional in-
dependent components. In other words, some ICA algorithms do
have stationary points which are solution of the MICA problem in
the two-step approach outlined above. The next open question is to
determine in a general setting the conditions for stability of these
stationary points.

5. ILLUSTRATION: FETAL ECG

We illustrate the MICA decomposition on the case of fetal ECG.
We use a data set [3] ofT = 2500 ECG points sampled at 500 Hz
with 3 electrodes located on the abdomen of a pregnant woman.
The first second of signal is displayed in the first column of fig. 1.
As stepi), we run the JADE algorithm [4], yielding (in about 500 K
flops) this estimate of a3� 3 mixing matrix:

Â = [â1; â2; â3] �

��� 3:481 �4:508 7:506

1:162 �9:527 �15:399

�2:377 1:514 11:267

��� : (8)

Applying Â�1 to the observations yields an estimate of 3 source
signals which are displayed in the second column. Stepii) is
here trivial to the human eye: the cardiac rhythms in the second
column reveal that the algorithm has extracted one source signal
coming from the fetus heart and two ‘source signals’ coming from
the mother heart. Therefore, this data set seems well modeled by
a MICA decomposition into one monodimensional (fetus) com-
ponent and one bi-dimensional component (mother). Since the
fetus signal clearly appears first in the second column, the or-
thogonal projection matrix on the fetus subspace is estimated by
�f = jâ1j

�2â1â
y
1 and the orthogonal projection matrix�m on

to the mother subspace is estimated as the orthogonal projection
matrix onto the column space of[â2; â3]:

�m �
��� 0:77 0:17 0:38

0:17 0:87 �0:28

0:38 �0:28 0:35

��� ;�b � ��� 0:63 0:21 �0:43

0:21 0:07 �0:14

�0:43 �0:14 0:30

��� :
1An extension of the ML approach to the MICA problem would be

to usec non-linear functions p : Rnp 7! Rnp and define (y) =

[ 1(y1)y; : : : ;  c(yc)y]y wherey = [yy1; : : : ;y
y
c]
y is a split of vectory

into c parts of sizen1; n2; : : : ; nc.



Using eq. (4) (or other equivalent but simpler expressions) yields

~�m �
��� 0:47 0:39 0:88

�0:18 1:13 0:29

0:36 �0:27 0:40

��� ; ~�b � ��� 0:53 �0:39 �0:88

0:18 �0:13 �0:29

�0:36 0:27 0:60

���
which allow to reconstruct a mother-only bidimensional compo-
nentxm = ~�mxwhose 3 entries are displayed in the third column
and a fetus-only monodimensional componentxf = ~�fx whose
3 entries are displayed in the last column. The same scale is used
for each row of the figure in columns 1, 3 and 4 since vectorsx,xm
andxf all live in the same space; the scale in the second column
which represents vectors is arbitrary: it isconventionallydeter-
mined by the JADE algorithm in such a way that the three entries
of s have unit variance. Let us discuss these results.
1) A first important point is that fetal ECG extraction is possible by
a BSS technique. This is important but only marginally related to
our discussion. Similar successes have already been reported [5, 6]
(better separation results are obtained with JADE when using the
whole original data set in which 8 sensor outputs are available; the
results presented herein are based only on the first 3 sensors due
to lack of space and also because we only mean to illustrate the
concept of MICA).
2) It is not possible to directly compare estimate (8) obtained by
JADE to estimates ofA obtained by other methods because, as
already argued, matrixA has no real existence in the BSS/ICA
model; only the projectors�m and�f (or functions of them) can
be estimated unambiguously from the data in the MICA context.
Similarly, the ‘mother source signals’ (rows 2 and 3 of the second
column on the figure) havea priori no significance. Only the re-
constructed mother signalxm (third column of the figure) can be
significantly compared to anotherxm estimated with another ICA
algorithm.

6. CONCLUSIONS

By reconsidering the notion of ICA, a more general perspective
can be envisioned: multidimensional independent component anal-
ysis (MICA). It is based on a geometric parameterization which is
free of the indeterminacies of matrix-based modeling. MICA re-
lies on the idea of vector-valued component rather than on scalar
‘source signals’. A canonical MICA decomposition is proposed as
an invariant decomposition which can be empirically computed by
post-processing the results of an ICA decomposition. This calls
for further research on developing tools for detecting the existence
of independent components in the ICA/MICA context.

Reproducible research.Inspired by the principle of Reproducible
Research, we make the Matlab code used to produce the ECG fig-
ure freely available upon request or at
http://sig.enst.fr/�cardoso/RRicassp98.html.
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