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ABSTRACT

In this paper, we have presented a systematic technique to
improve throughput of signal/image processing agorithms
when implemented on flexible precision hardware. Many
image/signal processing algorithms need 8-16 bit precision
while the DSPs available are of much higher precision (32-
bit). Significant performance gain can be obtained if multi-
plelow precision computationscan be performed in one cy-
cle of ahigh precision DSP. We have proposed aframework
based on agorithm transformation techniques of unfolding
and retiming to systematically map low precision a gorithms
onto high precision DSPs. The improvement in throughput
obtained by thisframework islinearly related to theratio of
precision used by the processor and that required by the al-
gorithm. Theefficacy of thistechniquehas been demonstrated
on alIR filter. We have also established some theoretical
boundson the maximum throughput that can be achieved us-
ing the proposed methodol ogy.

1. INTRODUCTION

The agorithm transformation techniques (ATT) such as un-
folding and retiming have been known to improve the per-
formance of the VLS| architectures significantly [1, 2, 3, 4].
For example, retiming [2, 3] has been employed to redis-
tributepipelining latchesinan a gorithm so that different pro-
cesses can run concurrently and thus reduce the processing
time; unfolding[4] iscapableof producing moreoutputssam-
plesin fewer cycles. In this paper, we intend to use these
ideas to speed up algorithm implementations on DSPs.
TheDigital Signal Processors (DSP) are being employed
to provideefficient solutionsto alarge number of image and
signal processing problems. Most image/signal processing
algorithmsare computati onally intensiveand usually the com-
putationsarerepetitive, i.e. the same set of operations needs
to be carried out for al the pixelsintheimage. A significant

THE SUPPORT OF THE NSF UNDER GRANT IRI-93-19038, NSF
CAREER AWARD MIP-9623737 AND ONR UNDER GRANT NO00014-
96-1-0502 1S GRATEFULLY ACKNOWLEDGED.

computational advantage can be achieved if we can reduce
the number of cyclesrequired to process one pixel. Usually
for image processing applications, the precision required is
8-16 hits. A significant advantage can be achieved if we can
perform say four 8-bit computations on a single 32-bit pro-
cessor in one cycle. In this paper, we have employed un-
folding and retiming to systematically map such low preci-
sion algorithms onto high precision DSPs so as to enhance
throughput. Some of thenew DSPs (e.g. TM S320C80) have
flexible precision hardware, which alows the programmer
to trest one DSP as multiple DSP unitswith correspondingly
lower precision. Graphically we can represent the scenario
asshowninFig. 1.
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Figure 1. Flexible precision DSP: One N bit precision DSP
can be programmed to behave asM DSPs of (N/M) bit pre-
cision.

Examplel: Consider analgorithmrepresented asaDirected
Flow Graph (DFG) in Fig. 2(a). A DFG isagraphic repre-
sentation of the sequence of computations in an algorithm.
ThisDFG computes: y(n) = a * z(n) + b. If wewritethe
corresponding assembly code without any pipelining, it will
take 4 cycles per computation of y(n): one cycle each for
reading «(n), multiplying by «, adding b and storing y(n).
We retime this DFG to obtain a pipelined DFG as shownin
Fig. 2(b). Thisgraph can beimplemented using only one cy-
cle, sincewhilewe are reading (), we can perform: Mul-
tiplication of z(n — 2) with @, addition of a x z(n — 4) with
b and storing y(n — 6), simultaneously in one cycle. Sim-
ply by applying retiming we have a performance improve-



ment by a factor of 4. Can we improve the throughput of
this algorithm further? The answer isyes. If the algorithm
is of lower precision then we can use unfolding to achieve
a higher throughput. We unfold the DFG by afactor of 2to
obtain the DFG in Fig. 2(c). We observe that unfolding in
this case splitsthe DFG into two identica sub-DFGs. Now
if we program the given 32-bit DSP so it behaves as two 16-
bit DSPs, then we can map the two sub-DFGs onto the two
16-bit DSPs. Each 16-bit DSP producesoneoutput per cycle
and there are two 16-bit DSPs working together and hence
we have two outputs per cycle. Hence unfolding enhances
thethroughput by afactor of 2inthiscase. Thus, weachieve
animprovement by afactor of 8, by applyingtheretiming[2,
3] and unfolding [4] techniques.
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Figure2: (a): A DFG corresponding to y(n) = ax(n) + b;
(b) Retimed DFG; (c) Unfolding by afactor of 2.
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Thispaper derivesthe optimal unfol dingfactor that would
givethe best DSPimplementation. The key behind thetech-
niqueisto unfold by afactor such that we get multipleiden-
tical DFGs which are decoupled. The requirement that sub-
DFGsshould beidentical comesfromthehardware constraint
that the low precision DSP units have to perform identical
operations. We a so desire that the sub-DFGs be decoupled
from each other. Presence of coupling can incur an over-

head in terms of additional cycles; a thorough analysis of
presence/absence of couplingand itsimpact onoverhead has
been discussed in Section 4. It has been found that amount
of overhead is proportional to the amount of coupling. This
analysisisimportant since it is not dways possibleto find
an unfolding factor greater than 1, such that DFG splitsinto
multipleidentical decoupled sub-DFGs. For such cases we
have proposed a suboptimal technique, which minimizesthe
amount of coupling in the unfolded graph.

The paper is organized as follows. In Section 2, we de-
scribe the proposed procedure to optimally map alow pre-
cision agorithm onto a flexible precision DSP, and demon-
strate throughput enhancement by two image processing ex-
amples. Section 3isdevoted to analysis of DFGs where the
procedure generates coupl ed sub-DFGsand demonstratesthe
performance of the suboptimal procedurethrough additional
image processing examples.

2. TECHNIQUESFOR THROUGHPUT
ENHANCEMENT

In this section, we propose a technique to improve through-
put of signal/imageprocessing a gorithmswhen implemented
on flexible precision DSPs. The proposed scheme isathree-
step procedure as outlined in Fig. 3.
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Figure 3: A three-step procedure for throughput enhance-
ment.

Thefirst step invol vesretiming which can be considered
as a preprocessing step.  The unfolding transformation re-
quires the DFG to have some desirable propertiesin order
that we achieve higher throughput and the preprocessing step
hel psto attain thoseproperties. Thelast step of post-retiming
reduces the iteration period of the graph.

Let ushave acloser look at Example 1. We observe that
weretimed the DFG in Fig. 2(a) such that we had even num-
ber of delays on each arc. Next, when we unfolded it by
a factor of 2, the unfolded DFG had two identical decou-
pled subparts. This allowed us to map each subpart inde-
pendently onto the two 16-bit split DSPs. This defines the
problem that we wish to address as follows:

Problem Definition: Tofind atransformation techniquesuch
that the resulting DFG hasidentical, decoupled subparts.

Lemma 1 and atheorem bel ow giveagenera solutionto
the above problem. Theorem 1 showsthat if the unfolding
factor is a common factor of the set of delays in the DFG,
then there is no coupling between the sub-DFGs produced
after unfolding. Moreover, the sub-DFGs are same as the



origina DFG except that the delays are scaled down by the
unfolding factor.

Lemma 1: Consider atwo-node DFG, denoted by G4, con-
sisting of nodes U and V' and an arc connecting them with
N ddlaysonit. Onunfolding G4 by J, suchthat .J isafactor
of V, weobtain J pairs of uncoupled nodes

(Uo, Vo), (U1, V1), -+ - (Us—1, Vy_1), with one arc connect-
ing each pair and having k delays each, where k = N/J.
Proof: The statement of Lemma 1 has been diagrammati-
caly presented inFig. 4.
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Figure 4: Diagrammatic description of Lemma 1.

Itisclearthat / < N and.J = kN. Wefind theunfolded
graph following thetechniqueoutlinedin[1]. The nodes U,
connects to node V;, with number of delays = [@]. The
subscript p can be evauated as

(N —-9q) (kJ —q)

[ 1/ =-N+q = [———1/-N+q()
= kJ—Jk+gq )
= q. (©)

where [M]D = kD. Thisshowsthat p = ¢, i.e node
V, connects to U, with number of delays= &, for al ¢ = 0
to J — 1. This completesthe proof of Lemma 1.1

Using Lemma 1, we can prove the following Theorem.
We have omitted the proof dueto lack of space.

Theorem 1: Consider a graph G with the following set of
ddays W = {w;,ws, - wy }, where M isthe number of
arcsin the graph . Let J be a common factor of the ele-
ments of thisset 1//. Then, if we unfold G by afactor J, we
get J decoupled sub-DFGswhich areidentical to 7, except
that the delaysin each of the sub-DFGs are scaled down by
J.

Corollary 1: The maximum unfoldingfactor ./ such that the
unfolded DFG consists of decoupled sub-DFGs, each iden-
tical to GG is the Highest Common Factor(HCF) of the arc
delays.

We note here that in [1] the authors employed unfolding
by the Least Common Multiple (LCM) of the delaysin all

the loops of agraph G to obtain perfect rate DFGs. Perfect
rate DFGs can be scheduled on multiprocessorswith an iter-
ation period equa to the iteration period bound. In this pa-
per, we have proposed unfol ding by the HCF of al thedelays
inagraph G so asto be ableto map low precision algorithms
on high precision DSPs.

For the cases when preprocessing by retiming does not
increasethe HCF of thedel ays, we have a so proposed amod-
ified unfolding techniquein Section 3.

3. SUBOPTIMAL TECHNIQUE FOR IMPROVING
THROUGHPUT

Asisclear from Lemma 1, that under the special case where
theunfoldingfactor ./, dividesall theddlaysinthe DFG, that
we get an unfolded DFG where nodes of identical subscripts
are connected. However, in genera thisis not true and un-
folding will connect nodes with different subscripts, result-
ing in coupling. When coupling occurs, the unfolded DFG
no longer hasidentical sub-partsand hencewe can’t directly
map multiplelow precision computationsonto the split flex-
ibleprecision hardware. To exploit theflexible precision na-
ture of hardware for such DFG we adopt the following pro-
cedure:

Divide the DFG into two sections: Section A in which
theset of delayshave HCF greater than 1 and Section B which
is complement of Section A, and this must have HCF = 1.
Weunfold Section A by J = Common Factor(CF) of thede-
laysinside Section A, by Theorem 1 or HCF by Corollary 1.
Thisresultsin J copies of the unfolded Section A, inwhich
delays are scaled down by factor J. As we had discussed
in previous section, if the ratio of the precision of DSP and
precision of DFG isequal to J, then J similar computations
can be done concurrently, thus aspeedup by factor J for that
section. Now we unfold Section B by .J, we will get cou-
pling and hence there isan overhead involved for computa-
tions belonging to Section B. In effect the total throughput
gain would be more than factor 1, but less than /. Though
the technique does not give factor .J improvement we usu-
aly get improvement close to J provided the computations
in Section A are relatively more than that in Section B.
Example7: Thisexampleillustratestheefficacy of methods
discussed above for a recursive structure. Fig. 5(a) shows
adirect-form |1 implementation of a 3rd order 16-bit preci-
sion IR filter. Applying the procedurein Fig. 3, we retime
thisDFG to obtain a structure shown in Fig. 5(b). Inthisre-
timed DFG al delays occur in groups of 2, except on one
arc, where there is only one delay. We divide the retimed
graph into two sections: Section A and Section B. Section
B is marked with dotted line and has delays with HCF =
1. The rest of the DFG is Section A and it has delays with
HCF = 2. Thisretimed DFG isunfolded to obtain one shown
in Fig. 5(c). In the unfolded DFG, two identical decoupled



copies of Section A are present. Whileon unfolding Section
B, we introduce one set of couplings, thus incurring a sin-
gle overhead. We note here that this overhead is the same
even for higher order IIR filters: Thisis because increasing
the order of thelIR filter increases the size of Section A but
Section B remainsthesame (i.e. consistsof asinglearc with
only onedelay inall cases). Since Section B accountsfor the
couplingthe overhead does not increase. Thisprocedure en-
hances the throughput of an 16-bit IR filter implementation
by approximately afactor of 2.

4. CONCLUSION

We have successfully used this procedure to implement So-
bel operator, perspective image dewarping with brightness
correction and spatia image averaging to obtain a perfor-
mance gains by factor of 2-3 over commercial implementa-
tionsfor TM S320C80. Compilersbased on these systematic
techniques can be easily built for such DSPs thus obtaining
high performance gains.
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Figure5: (a) A Block Diagram for a 3rd order IIR filter us-
ing thedirect form |1 structure; (b) A retimed version of the
DFG in (8). The section marked in dotted lines is Section
B and therest of the DFG is Section A; DFG obtained after
unfolding (b) by afactor of 2.



