
IMPROVING THE THROUGHPUT OF FLEXIBLE-PRECISION DSPS VIA ALGORITHM
TRANSFORMATION

Manoj Aggarwaly, Naresh Shanbhagz and Narendra Ahujay

Dept. of ECE, BIy, CSLz

University of Illinois at Urbana-Champaign
Urbana, IL 61801

ABSTRACT

In this paper, we have presented a systematic technique to
improve throughput of signal/image processing algorithms
when implemented on flexible precision hardware. Many
image/signal processing algorithms need 8-16 bit precision
while the DSPs available are of much higher precision (32-
bit). Significant performance gain can be obtained if multi-
ple low precision computations can be performed in one cy-
cle of a high precision DSP. We have proposed a framework
based on algorithm transformation techniques of unfolding
and retiming to systematically map low precision algorithms
onto high precision DSPs. The improvement in throughput
obtained by this framework is linearly related to the ratio of
precision used by the processor and that required by the al-
gorithm. The efficacy of this technique has been demonstrated
on a IIR filter. We have also established some theoretical
bounds on the maximum throughput that can be achieved us-
ing the proposed methodology.

1. INTRODUCTION

The algorithm transformation techniques (ATT) such as un-
folding and retiming have been known to improve the per-
formance of the VLSI architectures significantly [1, 2, 3, 4].
For example, retiming [2, 3] has been employed to redis-
tributepipelining latches in an algorithm so that different pro-
cesses can run concurrently and thus reduce the processing
time; unfolding [4] is capable of producingmore outputs sam-
ples in fewer cycles. In this paper, we intend to use these
ideas to speed up algorithm implementations on DSPs.

The Digital Signal Processors (DSP) are being employed
to provide efficient solutions to a large number of image and
signal processing problems. Most image/signal processing
algorithms are computationally intensive and usually the com-
putations are repetitive, i.e. the same set of operations needs
to be carried out for all the pixels in the image. A significant

THE SUPPORT OF THE NSF UNDER GRANT IRI-93-19038, NSF
CAREER AWARD MIP-9623737 AND ONR UNDER GRANT N00014-
96-1-0502 IS GRATEFULLY ACKNOWLEDGED.

computational advantage can be achieved if we can reduce
the number of cycles required to process one pixel. Usually
for image processing applications, the precision required is
8-16 bits. A significant advantage can be achieved if we can
perform say four 8-bit computations on a single 32-bit pro-
cessor in one cycle. In this paper, we have employed un-
folding and retiming to systematically map such low preci-
sion algorithms onto high precision DSPs so as to enhance
throughput. Some of the new DSPs (e.g. TMS320C80) have
flexible precision hardware, which allows the programmer
to treat one DSP as multiple DSP units with correspondingly
lower precision. Graphically we can represent the scenario
as shown in Fig. 1.

Nb

DSP

(N/M)b

(N/M)b

(N/M)b

DSP

DSP

DSP

1

2

M

.

.

.

==>

Figure 1: Flexible precision DSP: One N bit precision DSP
can be programmed to behave as M DSPs of (N/M) bit pre-
cision.

Example1: Consider an algorithmrepresented as a Directed
Flow Graph (DFG) in Fig. 2(a). A DFG is a graphic repre-
sentation of the sequence of computations in an algorithm.
This DFG computes: y(n) = a � x(n) + b. If we write the
corresponding assembly code without any pipelining, it will
take 4 cycles per computation of y(n): one cycle each for
reading x(n), multiplying by a, adding b and storing y(n).
We retime this DFG to obtain a pipelined DFG as shown in
Fig. 2(b). This graph can be implemented using only one cy-
cle, since while we are reading x(n), we can perform: Mul-
tiplication of x(n� 2) with a, addition of a �x(n� 4) with
b and storing y(n � 6), simultaneously in one cycle. Sim-
ply by applying retiming we have a performance improve-



ment by a factor of 4. Can we improve the throughput of
this algorithm further? The answer is yes. If the algorithm
is of lower precision then we can use unfolding to achieve
a higher throughput. We unfold the DFG by a factor of 2 to
obtain the DFG in Fig. 2(c). We observe that unfolding in
this case splits the DFG into two identical sub-DFGs. Now
if we program the given 32-bit DSP so it behaves as two 16-
bit DSPs, then we can map the two sub-DFGs onto the two
16-bit DSPs. Each 16-bit DSP produces one output per cycle
and there are two 16-bit DSPs working together and hence
we have two outputs per cycle. Hence unfolding enhances
the throughput by a factor of 2 in this case. Thus, we achieve
an improvement by a factor of 8, by applying the retiming [2,
3] and unfolding [4] techniques.

* +
x(n)

a b

y(n)

(a)

2D
Read x(n)

2D
Write y(n−6)* +

a b

2D

(b)

D D

Read x(2n)
D

Write y(2n−6)* +

a b

D D

Read x(2n−1) Write y(2n−7)* +

a b

D

(c)

Figure 2: (a): A DFG corresponding to y(n) = ax(n) + b;
(b) Retimed DFG; (c) Unfolding by a factor of 2.

This paper derives the optimalunfoldingfactor that would
give the best DSP implementation. The key behind the tech-
nique is to unfold by a factor such that we get multiple iden-
tical DFGs which are decoupled. The requirement that sub-
DFGs should be identical comes from the hardware constraint
that the low precision DSP units have to perform identical
operations. We also desire that the sub-DFGs be decoupled
from each other. Presence of coupling can incur an over-

head in terms of additional cycles; a thorough analysis of
presence/absence of couplingand its impact on overhead has
been discussed in Section 4. It has been found that amount
of overhead is proportional to the amount of coupling. This
analysis is important since it is not always possible to find
an unfolding factor greater than 1, such that DFG splits into
multiple identical decoupled sub-DFGs. For such cases we
have proposed a suboptimal technique, which minimizes the
amount of coupling in the unfolded graph.

The paper is organized as follows. In Section 2, we de-
scribe the proposed procedure to optimally map a low pre-
cision algorithm onto a flexible precision DSP, and demon-
strate throughput enhancement by two image processing ex-
amples. Section 3 is devoted to analysis of DFGs where the
procedure generates coupled sub-DFGs and demonstrates the
performance of the suboptimal procedure through additional
image processing examples.

2. TECHNIQUES FOR THROUGHPUT
ENHANCEMENT

In this section, we propose a technique to improve through-
put of signal/image processing algorithmswhen implemented
on flexible precision DSPs. The proposed scheme is a three-
step procedure as outlined in Fig. 3.

DFG DFG DFG
1 2 3

Retiming Unfolding

DFG
4

Retiming

Figure 3: A three-step procedure for throughput enhance-
ment.

The first step involves retiming which can be considered
as a preprocessing step. The unfolding transformation re-
quires the DFG to have some desirable properties in order
that we achieve higher throughputand the preprocessing step
helps to attain those properties. The last step of post-retiming
reduces the iteration period of the graph.

Let us have a closer look at Example 1. We observe that
we retimed the DFG in Fig. 2(a) such that we had even num-
ber of delays on each arc. Next, when we unfolded it by
a factor of 2, the unfolded DFG had two identical decou-
pled subparts. This allowed us to map each subpart inde-
pendently onto the two 16-bit split DSPs. This defines the
problem that we wish to address as follows:
Problem Definition: To find a transformation technique such
that the resulting DFG has identical, decoupled subparts.

Lemma 1 and a theorem below give a general solution to
the above problem. Theorem 1 shows that if the unfolding
factor is a common factor of the set of delays in the DFG,
then there is no coupling between the sub-DFGs produced
after unfolding. Moreover, the sub-DFGs are same as the



original DFG except that the delays are scaled down by the
unfolding factor.

Lemma 1: Consider a two-node DFG, denoted by G1, con-
sisting of nodes U and V and an arc connecting them with
N delays on it. On unfoldingG1 by J , such that J is a factor
of N , we obtain J pairs of uncoupled nodes
(U0; V0); (U1; V1); � � � (UJ�1; VJ�1), with one arc connect-
ing each pair and having k delays each, where k = N=J .
Proof: The statement of Lemma 1 has been diagrammati-
cally presented in Fig. 4.

Unfold
by
J = N/k

U V

U

U

U U

U

U0

1

J−1

0

1

J−1

ND

kD

kD

kD

Figure 4: Diagrammatic description of Lemma 1.

It is clear that J < N and J = kN . We find the unfolded
graph following the technique outlined in [1]. The nodesUp
connects to node Vq with number of delays = dN�q

J
e. The

subscript p can be evaluated as

d
(N � q)

J
eJ � N + q = d

(kJ � q)

J
eJ �N + q (1)

= kJ � Jk + q (2)

= q: (3)

where d (N�q)
J

eD = kD. This shows that p = q, i.e node
Vq connects to Uq with number of delays = k, for all q = 0
to J � 1. This completes the proof of Lemma 1.

Using Lemma 1, we can prove the following Theorem.
We have omitted the proof due to lack of space.

Theorem 1: Consider a graph G with the following set of
delays W = fw1; w2; � � �wMg, where M is the number of
arcs in the graph G. Let J be a common factor of the ele-
ments of this set W . Then, if we unfoldG by a factor J , we
get J decoupled sub-DFGs which are identical to G, except
that the delays in each of the sub-DFGs are scaled down by
J .

Corollary 1: The maximum unfolding factor J such that the
unfolded DFG consists of decoupled sub-DFGs, each iden-
tical to G is the Highest Common Factor(HCF) of the arc
delays.

We note here that in [1] the authors employed unfolding
by the Least Common Multiple (LCM) of the delays in all

the loops of a graph G to obtain perfect rate DFGs. Perfect
rate DFGs can be scheduled on multiprocessors with an iter-
ation period equal to the iteration period bound. In this pa-
per, we have proposed unfoldingby the HCF of all the delays
in a graphG so as to be able to map low precision algorithms
on high precision DSPs.

For the cases when preprocessing by retiming does not
increase the HCF of the delays, we have also proposed a mod-
ified unfolding technique in Section 3.

3. SUBOPTIMAL TECHNIQUE FOR IMPROVING
THROUGHPUT

As is clear from Lemma 1, that under the special case where
the unfolding factor J , divides all the delays in the DFG, that
we get an unfolded DFG where nodes of identical subscripts
are connected. However, in general this is not true and un-
folding will connect nodes with different subscripts, result-
ing in coupling. When coupling occurs, the unfolded DFG
no longer has identical sub-parts and hence we can’t directly
map multiple low precision computations onto the split flex-
ible precision hardware. To exploit the flexible precision na-
ture of hardware for such DFG we adopt the following pro-
cedure:

Divide the DFG into two sections: Section A in which
the set of delays have HCF greater than 1 and Section B which
is complement of Section A, and this must have HCF = 1.
We unfold Section A byJ = Common Factor(CF) of the de-
lays inside Section A, by Theorem 1 or HCF by Corollary 1.
This results in J copies of the unfolded Section A, in which
delays are scaled down by factor J . As we had discussed
in previous section, if the ratio of the precision of DSP and
precision of DFG is equal to J , then J similar computations
can be done concurrently, thus a speedup by factor J for that
section. Now we unfold Section B by J , we will get cou-
pling and hence there is an overhead involved for computa-
tions belonging to Section B. In effect the total throughput
gain would be more than factor 1, but less than J . Though
the technique does not give factor J improvement we usu-
ally get improvement close to J provided the computations
in Section A are relatively more than that in Section B.
Example 7: This example illustrates the efficacy of methods
discussed above for a recursive structure. Fig. 5(a) shows
a direct-form II implementation of a 3rd order 16-bit preci-
sion IIR filter. Applying the procedure in Fig. 3, we retime
this DFG to obtain a structure shown in Fig. 5(b). In this re-
timed DFG all delays occur in groups of 2, except on one
arc, where there is only one delay. We divide the retimed
graph into two sections: Section A and Section B. Section
B is marked with dotted line and has delays with HCF =
1. The rest of the DFG is Section A and it has delays with
HCF = 2. This retimed DFG is unfolded to obtain one shown
in Fig. 5(c). In the unfolded DFG, two identical decoupled



copies of Section A are present. While on unfolding Section
B, we introduce one set of couplings, thus incurring a sin-
gle overhead. We note here that this overhead is the same
even for higher order IIR filters : This is because increasing
the order of the IIR filter increases the size of Section A but
Section B remains the same (i.e. consists of a single arc with
only one delay in all cases). Since Section B accounts for the
coupling the overhead does not increase. This procedure en-
hances the throughput of an 16-bit IIR filter implementation
by approximately a factor of 2.

4. CONCLUSION

We have successfully used this procedure to implement So-
bel operator, perspective image dewarping with brightness
correction and spatial image averaging to obtain a perfor-
mance gains by factor of 2-3 over commercial implementa-
tions for TMS320C80. Compilers based on these systematic
techniques can be easily built for such DSPs thus obtaining
high performance gains.

5. ACKNOWLEDGMENTS

The authors are grateful to Rakesh Dugad for his valuable
comments and his kind suggestions.

6. REFERENCES

[1] K.K. Parhi, “Algorithm transformation techniques for
concurrent processors”, Proceeding of the IEEE, Vol.
77, pp. 1879-1895, Dec. 1989.

[2] S.-Y. Kung, “On Supercomput-
ing with Systolic/Wavefront array processors,” Proc. of
IEEE,, vol. 72, no. 7, pp. 867-884, July 1984.

[3] C. Leisserson and J. Saxe, “Optimizing Synchronous
systems”, J. of VLSI and Computer Systems, vol. 1, pp.
41-67, 1983.

[4] R. Hartley and P. Corbett, “Digit-serial processing tech-
niques”, IEEE Trans. on Circuits and Systems, vol. 37,
no. 6, pp 707-719, June 1990.

[5] Texas Instruments, TMS320C8x System-level Synopsis,
1995.

[6] Texas Instruments, TMS320C80 (MVP) Parallel Pro-
cessor User’s Guide, 1995.

+ x

D

x+ +

+

x

a b

D

x+ +x

a b

D

x x

a b

b

1

2

3

1

2

3

x(n) y(n)A

B

C

E

0

(a)

+

D

x+ +

+

x

a b1 1

x(n) y(n)A

B

x x

a b
2 2

C

2D

x x

a b
3 3

E

2D

x

b0

(b)

+

x+ +

+

x

a b1 1

x(2n) y(2n)A

B

x+ +x

a b
2 2

C

x x

a b
3 3

E

D

x

b0

D

+

x+ +

+

x

a b1 1

x(2n-1) A

B

x+ +x
C

x x

a b
3 3

E

x

b0

D

D

y(2n-1)

a
2

b2

(c)

Figure 5: (a) A Block Diagram for a 3rd order IIR filter us-
ing the direct form II structure; (b) A retimed version of the
DFG in (a). The section marked in dotted lines is Section
B and the rest of the DFG is Section A; DFG obtained after
unfolding (b) by a factor of 2.


