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ABSTRACT

We attack the general problem of HMM-based speech
recognizer design, and in particular, the problem of iso-
lated letter recognition in the presence of background
noise. The standard design method based on maximum
likelihood (ML) is known to perform poorly when ap-
plied to isolated letter recognition. The more recent
minimum classi�cation error (MCE) approach directly
targets the ultimate design criterion and o�ers substan-
tial improvements over the ML method. However, the
standard MCE method relies on gradient descent opti-
mization which is susceptible to shallow local minima
traps. In this paper, we propose to overcome this dif-
�culty with a powerful optimization method based on
deterministic annealing (DA). The DA method mini-
mizes a randomized MCE cost subject to a constraint
on the level of entropy which is gradually relaxed. It
may be derived based on information-theoretic or sta-
tistical physics principles. DA has a low implemen-
tation complexity and outperforms both standard ML
and the gradient descent based MCE algorithm by a
factor of 1.5 to 2.0 on the benchmark CSLU spoken
letter database. Further, the gains are maintained un-
der a variety of background noise conditions.

1. INTRODUCTION

The recognition of spoken letters is an important sub-
problem in the design of spelled name recognition sys-
tems [1] which are used in applications such as auto-
matic car navigation, automated directory assistance,
voice activated call forwarding etc. Accurate name
recognition in spelled name recognition systems is highly
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conditioned on the accurate recognition of individual
letters. However, the task of english letter recogni-
tion is known to be challenging due to the high con-
fusability of the alphabet. In particular, utterances
of letters in the subsets fb; c; d ; e; g ; p; t ; v ; zg (E-set),
fa; k ; jg, ff ; s; xg, fi ; r ; yg and fm; ng are often con-
fused with each other. The di�cult nature of the recog-
nition task is further aggravated in real-world situa-
tions by the presence of background noise and in the
case of telephone-based systems, by the additional pres-
ence of channel distortion.

Here, we consider a standard recognition system
based on hidden Markov models (HMM). The main
contribution of this paper is a powerful new HMM
design method that improves the recognizer's classi-
�cation rate compared to standard design methods.
The fundamental approach is however, not restricted
to HMM systems and can be applied to the design of
other pattern classi�ers including neural network based
speech recognition systems.

1.1. HMM-based speech recognition

The HMM paradigm is widely used in conventional
speech recognition systems. The design of HMM-based
recognizers has traditionally been based on maximum
likelihood (ML) modeling of speech. However, the ulti-
mate objective is not to model but rather to minimize
the error rate of the classi�er. In the standard ML
approach, a labelled training set of classi�ed speech
patterns is divided into subsets of identically labelled
patterns and the HMM corresponding to each label is
designed independently from the corresponding subset
via maximum likelihood estimation of the model pa-
rameters. Note that the maximum likelihood design
objective does not minimize classi�cation errors unless
the HMM structure is the precise model for the speech.
Further, the ML objective di�ers signi�cantly from the
optimal classi�cation objective when the training set is
short.



The inadequacies of the ML design approach have
been pointed out by several researchers [2, 3, 4]. who
noted that signi�cant gains in accuracy and robustness
are possible by directly targeting the minimum clas-
si�cation error (MCE) objective. However, MCE op-
timization is di�cult for two main reasons. The �rst
and most widely recognized, is that unlike the ML cost,
the classi�er's error rate is a piecewise constant func-
tion of the HMM parameters. This implies that gradi-
ents with respect to the parameters vanish almost ev-
erywhere (an in�nitesimal change in parameter values
will not change the classi�cation of any training pat-
tern). Consequently, one cannot directly use gradient-
based optimization of MCE. To address this problem
the Generalized Probabilistic Descent (GPD) method
[5] has been suggested. GPD replaces the classi�ca-
tion error cost surface with a smooth approximation,
thus allowing the application of gradient-based opti-
mization. However, as we will demonstrate later, even
if the cost surface is smoothed, it might still be highly
complex and riddled with shallow local minima which
tend to trap gradient descent algorithms. Another di�-
culty in MCE design is that it entails joint optimization
of all the HMM parameters, which is computationally
complex, even for an o�-line design.

To overcome the optimization di�culties of the stan-
dard MCE approach, we propose here, an alternative
method based on the technique of deterministic an-
nealing (DA). DA was �rst proposed in the context
of clustering [6], later extended to solve structurally
constrained clustering problems such as the design of
pattern classi�ers [7] and regression functions [8], and
recently applied to of time series classi�cation [9]. We
will show here that the DA method for HMM classi�er
design o�ers substantial gains by combining the right
criterion of MCE with the optimization power of DA.

2. THE HMM DESIGN PROBLEM

In a typical isolated-word speech recognition system,
we are given a training set

T � f(y1; c1); (y2; c2); ::(yN ; cN )g (1)

of labelled patterns. The pattern yi corresponds to
an utterance of the word, ci from the dictionary, C �
f1; 2; ::Mg. The vector yi consists of a sequence of li
observations. Our method allows for both discrete and
continuous valued observations.

The HMM classi�er system is speci�ed by a set of
HMMs fHj; j = 1; 2; � � � ;Mg, one per word in the dic-
tionary. HMM Hj is speci�ed by the parameter set

�j which is composed of the state transition proba-
bilities, state-dependent output distributions and the
initial probabilities of the states. In this paper, we
consider an HMM system based on the \best path"
discriminant 1. Given a training sequence yi, for each
HMM Hj, we de�ne the discriminant dj(yi) as the log
likelihood (based on the HMMmodel) of the most likely
state sequence,

dj(yi) = max
s2Sli

(Hj )
l(yi; s;Hj): (2)

Here, Sli(Hj) is the set of all li length state sequences
in Hj and l(yi; s;Hj) is the log likelihood of a partic-
ular state sequence s. The output of the classi�er is
the word corresponding to the HMM with the highest
discriminant:

C(yi) = argmax
j

dj(yi): (3)

This classi�cation system can be viewed as a compe-
tition between paths. The observation is ultimately
labeled by the class index of the HMM to which the
winning path belongs. The classi�er design problem
can be stated as the joint optimization of the the HMM
parameters f�jg to minimize the empirical misclassi�-
cation rate measured over the training set,

min
f�jg

Pe = 1�
1

N

NX

i=1

�(C(yi); ci): (4)

Here � is the error indication function: �(u; v) = 1 if
u = v and 0 otherwise.

The cost function of (4) is a piecewise constant
function of the HMM parameter set thus making naive
gradient-based optimization impossible. Although the
GPD method replaces this cost function by a continu-
ously di�erentiable function which is amenable to gra-
dient descent, in practice GPD may easily get trapped
in shallow local minima of the cost surface.

3. DETERMINISTIC ANNEALING

The deterministic annealing algorithm is based on the
concept of a random classi�cation. The idea is to re-
place the \best path" classi�er by a random classi�er
during the design. Given an observation yi, the ran-
dom classi�er chooses from the set of all state sequences
in all the HMMs, a random winning state sequence, s

1Our design method can be easily modi�ed to the case where
the discriminant is obtained by appropriate averaging of the like-
lihood over all paths.



in HMM Hj with a probability obeying the Gibbs law:

P (s;Hjjyi) =
el(yi;s;Hj )

P

j
0

P

s02Sli
(H

j
0 )

e
l(yi ;s0

;H
j
0 )
: (5)

The parameter,  controls the \fuzziness" of the distri-
bution. For  = 0, the distribution over paths is uni-
form. For �nite, positive values of , the Gibbs distri-
bution assigns higher probabilities of winning to state
sequences with higher log likelihood scores, l(yi; s;Hj).
In the limiting case of  !1, the randomclassi�cation
rule reverts to the non-random \best path" classi�er of
(2), which selects with probability one, the path with
the highest log likelihood. The Gibbs parametric form
is not arbitrary, and can be derived in a systematic
manner from information-theoretic principles [9]. At
this point, we re-emphasize that the random classi�er
paradigm is adopted only during design - in the limit,
the DA algorithm is designing a regular non-random
HMM-based classi�er.

The expected error rate (over the training set) of
the random classi�er is given by:

< Pe >= 1�
1

N

NX

i=1

X

s2Sli
(Hci

)

P (s;Hjjyi): (6)

Simple minimization of the expected error rate of (6)
with respect to all the HMM parameters and the scale
parameter  is possible although such a method (some-
what like GPD) is susceptible to shallow local minima
traps on the cost surface. We adopt instead, an \an-
nealing" strategy to overcome the poor local minima
problem. It is based on an entropy-constrained formu-
lation: Rather than minimize the misclassi�cation cost
(< Pe >) of the random classi�er as is, we minimize it
while enforcing a constraint on the Shannon entropy (a
measure of randomness),

H = �
1

N

X

i

X

j

X

s2Sli
(Hj)

P (s;Hjjyi) logP (s;Hjjyi):

(7)
We thus optimize the HMM parameters so as to mini-
mize the expected error rate < Pe > while constraining
the randomness to a prescribed entropy level, H = Ĥ.
We then gradually lower the entropy level while re-
peating the optimization process. The constrained op-
timization problem of minimizing < Pe > at a given
entropy level is equivalent to the unconstrained La-
grangian minimization:

min
f�jg;

L =< Pe > �TH (8)

where T is the corresponding Lagrange parameter. The
parameter, T , is gradually reduced from a high value to
zero, while tracking the minimum of L. As T ! 0, the
optimization reduces to the unconstrained minimiza-
tion of < Pe > which forces  ! 1 leading to the
optimal non-random maximum discriminant classi�er.
The gradual reduction of T is central to the ability of
the algorithm to avoid shallow local minima on the cost
surface. We refer to the Lagrange parameter T as the
temperature because of interesting connections to sta-
tistical physics. The process of reducing T to zero is
similar in principle to the phenomenon of annealing in
physical systems. For more insights into the physical
analogy, see [6, 7, 8].

The minimization of the Lagrangian cost function
L is achieved by a series of gradient descent steps at
each temperature. An important aspect of the pro-
posed method is the discovery of an e�cient forward-
backward algorithm to determine the gradient parame-
ters for the optimization. The complexity of DA scales
similarly to the maximum likelihood method with re-
spect to the number of states and training vectors. De-
tails of the algorithm are omitted for brevity, but will
be presented at the conference.

4. EXPERIMENTAL RESULTS

In this section, we report the results of our experiments
on the recognition of isolated english letters. In these
experiments, we �xed the front-end processing of a dis-
crete observation HMM system (both feature set and
feature quantization codebook) and compared design
methods to optimize the HMM classi�er. Three meth-
ods were considered: (i) standard maximum likelihood
(ML) (ii) Generalized Descent (GD) 2 and (iii) deter-
ministic annealing (DA).

The dataset, which is a part of the ISOLET database
from CSLU 3, consists of english letters spoken by 60
speakers (30 male and 30 female). Every speaker ut-
tered each letter once and for each utterance, four noise-
corrupted versions were obtained by adding synthetic
white noise, recorded car noise, computer fan noise
and air-conditioner noise to the clean speech. The
speech which was sampled at 16 KHz was divided into
frames of 512 samples. Consecutive frames overlap by
256 samples. In each frame, a 28 dimensional feature

2The GD approach is in principle, similar to GPD as it
smooths the misclassi�cation cost and then applies gradient de-
scent. As it is also a degenerate case of DA, we have chosen to
use it for comparison, while maintaining all auxillary parameters
identical.

3Information on the ISOLET and how to obtain it is available
at http://www.cse.ogi.edu/CSLU/corpora/



consisting of 14 Mel-scale FFT-based cepstral coe�-
cients (MFCC) and their �rst-order time derivatives
(�MFCC coe�cients) was extracted. The MFCC co-
e�cents have the advantage of robustness to noise and
ease of computation over other features. This 28 di-
mensional feature was quantized using a codebook of
64 vectors. The HMMs were each con�gured in a four-
state left-to-right architecture.

The recognizer was designed as follows. First, the
major confusable sets were identi�ed: fb; c; d ; e; g ; p; t
; v; zg, fa; k ; jg, ff ; s; xg, fi ; r ; yg and fm; ng. Next,
for each confusable set, an HMM classi�er was designed
using each of the GD and DA approaches with the ob-
jective of minimizing errors for patterns within that set.
Also, an HMM classi�er was designed for the entire al-
phabet using the ML approach. Since standard ML
works quite well for letters outside the confusable sets,
the full-alphabet ML-designed HMM classi�er can be
used as a �rst pass to identify the utterance. If the �rst
pass maps the input pattern to a letter in one of the
confusable sets, then a second pass is initiated to iden-
tify the utterance more carefully using the (GD or DA-
designed) HMM classi�er designed for that set. Other-
wise, the letter with the highest discriminant in the �rst
pass is identi�ed as the recognized class. Clearly, the
second pass that uses either DA or GD designed HMMs
can improve on the performance of the �rst pass. In
the table below, we compare the error rates obtained
under three di�erent setups: (a) only the ML-designed
�rst pass was used (ML) (b) ML-designed �rst-pass was
followed by a GD-designed second pass (GD) and (c)
ML-designed �rst-pass was followed by a DA-designed
second pass (DA). The error rates obtained in the three
setups are presented for each of the background condi-
tions. Clearly, the DA approach performs consistently
and substantially better than both ML and GD ap-
proaches.

Background ML GD DA
Clean 14.4% 13.9 % 7.0%

Car Noise 27.6% 25.4% 21.3%
White Noise 17.1% 15.4% 11.3%

Computer Fan noise 30.4% 28.5% 24.1%
Air-conditioner noise 23.6% 21.8% 13.8%

Table 1: Comparison of misclassi�cation rates (Pe) ob-
tained by the maximum likelihood (ML), gradient de-
scent (GD), and deterministic annealing (DA) method
for isolated letter recognition under di�erent back-
ground conditions.

It is important to note that the results in the ta-

ble which are for the training set are given to illustrate
the improved optimization o�ered by the DA approach.
Given the size of the training set, all three methods in
fact overtrain the classi�er and the performance of all
three methods are greatly degraded outside the train-
ing set. The relative gains of DA are also similarly
reduced. Modi�ed variants of these algorithms which
are designed to eliminate overtraining are currently un-
der investigation. These results may be available for
presentation at the conference.
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