RECONFIGURATION FOR POWER SAVING
IN REAL-TIME MOTION ESTIMATION

S.R. Park and W. Burleson

Department of Electrical and Computer Engineering
University of Massachusetts at Amherst, MA 01003
{srpark, burleson}@ecs.umass.edu

ABSTRACT

Motion estimation presents a class of algorithms well-suited
to reconfigurable hardware due to their variable computa-
tional load, highly structured array architectures, robust
reduced complexity algorithms, and a motivation for low
power implementations in portable video products. Motion
estimation is the most computationally demanding part of
video compression algorithms and hence usually requires
hardware support for real-time implementation. However
dedicated hardware usually requires that the algorithm and
most of its parameters be hardwired. Reconfigurable hard-
ware based on FPGAs allows the parallelism of hardware
implementations with the flexibility of software.

The statistics of motion vectors can be monitored on
a frame by frame basis to choose appropriate algorithm
and hardware configurations. Unlike some proposed ap-
plications of dynamic reconfiguration, this rate can easily
be supported by existing FPGA technology. Another novel
aspect of this work is that we use power savings as a moti-
vation for the reconfiguration. Although FPGAs are not a
very power efficient technology, careful design of array ar-
chitectures can allow power to be saved by avoiding unnec-
essary computation by adjusting the search area according
to the changing characteristics of an input video signal. An-
other more general result is that further power saving can be
achieved by utilizing free FPGA resources as local memory
to avoid power-hungry off-chip communication. Practical
implementation issues using Xilinx 6200 series FPGAs are
also discussed.

1. INTRODUCTION

Visual communication is a rapidly growing area for telecom-
munications, computers and multimedia. There are now
several video compression standards such as H.261, MPEG-
1 and MPEG-2, which are all based on block based motion
compensation and Discrete Cosine Transform(DCT) to re-
duce the temporal and spatial redundancy, respectively[1].
To reduce the enormous date rate of a video signal, DCT
is used in intraframe coding and motion estimation /com-
pensation is used in interframe coding.

Motion estimation is the most computationally demand-
ing part of video coding. It exploits temporal correlation
between two consecutive frames and provides a large (typ-
ically a factor of five) coding efficiency [2]. Most motion
estimation algorithms implemented in VLSI up to now do

not have flexibility at all or have only a small amount of
flexibility. Most significantly, the search area size can not
be varied at run-time. If the search area can be adjusted
dynamically according to the changing characteristics of an
input video signal, the search area size can be tailored to
avoid unnecessary computation, and hence power saving
without severe loss of picture quality.

In this paper, we propose a reconfigurable approach to
motion estimation. Rather than proposing new architec-
tures or new matching criteria, we focus on how reconfig-
urability can be exploited in motion estimation with well-
known architecture and matching criteria. The power sav-
ing due to reconfiguration is analyzed by using a simple
model.

2. MOTION ESTIMATION

For estimating motion by means of a block matching algo-
rithm, the image is divided into blocks of n x n pixels. Usu-
ally n is 16. The blocks resulting from the segmentation of
the current and previous frames are called the current and
previous block, respectively. For each current block, the
best matching previous block is found within a search area
surrounding the previous block. The previous blocks in a
search area are called candidate blocks. Suppose the search
area extends on both sides over p pixels in the horizontal
and vertical directions, then the search area is (2p + n)z,
and the total number of the candidate blocks in search area
is (2p 4 1)%. If the picture size is M by N pixels, then the
number of blocks in one frame is M N/n®. We assume that
M and N are integer multiples of n throughout this paper.

To compute the motion vector, the Mean Absolute Dif-
ference (MAD) criterion is widely used.

D(k,) =) Y le(ii) —y(i+ki+D (1)

Vmin = (kyl)Dmin (2)

where z(4,) is the luminance value of a pixel in the current
block and y(i+k,j+ 1) is the luminance value of a pixel in
the candidate block. V.. is called the motion vector. The
displacement calculated is limited to a search area range
such that —p < k,l < p. Fig.1 shows a block and a block
matching algorithm. Basically block matching algorithms
can be divided into two categories: full search block match-
ing algorithm(FS BMA) and ‘intelligent’ or ‘directed’ search

Previous frame

M
Current frame 2p+n$ o
|
|

o
B e
- 2p+n

(@ (b)

Figure 1: (a) Block in a frame (b) Motion Estimation by
block matching

algorithms. In FS BMA, all candidate blocks in a search
area are compared to the current block and a best match
is determined. To reduce the computational overhead ‘in-
telligent’ search algorithms compare only a small number
of candidate blocks in a search area while introducing mild
performance degradation.

As for the matching criteria, Mean Absolute Differ-
ence(MAD) is widely used instead of Mean Squared Dif-
ference(MSD) due to the simpler operation. Reduced Bits
Mean Absolute Difference(RBMAD)[4], and Pel Difference
Classification(PDC)[5] can be used to reduce the hardware
complexity at the expense of mild performance degradation.

3. RECONFIGURABLE MOTION
ESTIMATION ALGORITHM

In general, FS BMA with MAD matching criteria is used in
VLSI implementation due to its regularity and simple basic
calculations. However reconfigurable VLSI opens up new
possibilities which better support irregularity to exploit the
temporal variation in video sequences. Reconfigurable algo-
rithms and architectures have the potential to reduce power
consumption without severe degradation in picture quality
by adjusting its search area. In addition, more power can
be saved by utilizing unused hardware resources as local
memory.

3.1. Motion Vectors and Search space

The statistics of motion vector vary considerably between
and within video sequences. Fig.2 shows the distributions
of the horizontal component of the motion vector of ‘Miss
America’ and ‘table tennis’ video sequences. The first 100
frames were used for collecting the motion vectors. As can
be seen, the range and the shape of the distribution of mo-
tion vectors are different mainly due to the changing charac-
teristics of the video signal. In the ‘table tennis’ sequence,
even in the same sequence, the shape of the motion vec-
tor distribution is different along with the frame number
because of the changing characteristics of picture content.
These observations are one of the motivations for changing
the search window size and hence the motion vector range
according to the input video signals. Fig.3 shows how com-
pression varies with search space size for ‘flower garden’
sequence.

Mss Anerica

Tabl e Tennis

Figure 2: Motion Vector Distribution over time in ‘Miss
America’ and ‘table tennis’ video sequences.

Cooooooor
@
o
T

Figure 3: Bit per pixel(bpp) vs. p in ‘flower garden’ video
sequence

3.2. Guidelines for Reconfigurable Motion Estima-
tion Algorithm

In this subsection we discuss some guidelines for reconfigu-
ration and suggest a simple algorithm. Two basic questions
are how often a search area should be adjusted and how
large a search area should be. The time interval between
reconfigurations can be as short as a frame-by-frame ba-
sis or as long as several minutes. The reconfiguration rate
should be determined by considering the followings: 1)the
changing characteristics of the input signal, 2)the reconfig-
uration time of a specific FPGA being used, 3)penalties for
gathering the motion vector statistics. Hence it should be
determined by considering the system and FPGAs being
used.

We suggest a simple reconfiguration algorithm that col-
lects motion vector statistics over 10 frames and adjusts the
search area to accommodate 95% of motion vectors. It is
based on the assumption that the content of a picture does
not change too frequently and the fact that unnecessarily
larger search window is not so beneficial in picture quality.
This is obviously an area for further research.

4. RECONFIGURABLE ARCHITECTURES
FOR MOTION ESTIMATION

Full search block matching algorithm (1) can be imple-
mented in hardware in several ways. We consider one of
well-known architectures[3] as an example of reconfigurable
motion estimation. If the index (¢,7) in (1) is mapped into

hardware, then block matching is performed by sequential
exploration of the search area(Fig.5(a)), while the compu-
tation of each D(k,!) is performed in parallel. Fig.4 shows
the practical implementation. ‘AD block’ computes abso-
lute value and summation and ‘R block’ is composed of a
mux and registers. ‘4 block’ accumulates the results and
‘M block’ determines the Vinin. Fig.5(b) is a simplified rep-
resentation of Fig.4 (b). Fig.5(c) is a reconfigured architec-
ture to support a larger search area than Fig.5(b).

y x

AD block

,,,,,,,,,,,,, | Y
) B oo
B oo
B Vo

@ (b)

Figure 4: practical implementation[3] (a) details of AD
block and M block (b) architecture (n = 3,p = 2)

Search Window

T

] RBlock

i ﬁ [l ADBlock
+Block
Reference u
Block M Block

@ (b) ©

Figure 5: (a) principle of the algorithm[3] (b) simplified
block diagram (n = 3,p = 2) (c) reconfigured architecture
to support a larger search area (n = 3,p = 4)

4.1. Power Estimation

In this subsection we use a simple model to figure out how
much power can be saved by reducing the search area. The
power consumed in the motion estimation processor can be
approximated as follows.

Piotal = Pcomp+PI/O (3)

where Pomp and PI/O are the power consumed by compu-
tation and I/O, respectively.

The first term, the power consumed by computation,
in (3) can be assumed to be proportional to the number of
operations to find a motion vector. To compute D(k,!), var-
ious operations are needed: e.g., difference, absolute value,
summation. We denote the power to compute a distance as

Pyistance. Since D(k,1) should be calculated for every pixel
in the current block and comparison is only needed for each
candidate block in the search area, P.omp can be expressed
as follows.

Pcomp = (Pdistance X nZ + Pcompare) X (ZP + 1)2 (4)

As we can see from (4), the power consumed by computa-
tion is reduced quadratically as p is decreased.

The second term in (3) is the number of I/O operations.
Since the number of motion vectors in a frame is much less
than the number of pixels in a frame, we consider only the
number of pixel accesses to figure out the power consumed
by I/O. If the Motion Estimation(ME) processor has a large
enough on-chip memory to store the entire current and pre-
vious frame, then the memory traffic is

2X M X N X firame (5)

If the ME processor has a limited amount of on-chip mem-
ory to hold one current block and one search area(or a small
part of a search area) data, then it should read the current
and search block data each time it computes the motion
vector. In this worst case, memory traffic is given by

(M x N+ (2p+n)? x M x N/n®) X firame (6)
where M X N X firame and ((2p4n)? x M x N/n?) X firame

correspond to memory traffic for the current and previous
frame, respectively. The ratio of (6) and (5) is 0.5 x (1 +
((2p 4+ n)/n)?). If p = 8 and n = 16, then the ratio is 2.5,
i.e., it needs 2.5 times more off-chip memory accesses.

Fig.6 shows the power consumed by computation and
I/O with n = 16 and parameter p. Each curve is normalized
to 1 when p = 8. (The actual ratio of I/O to computation
power is technology-dependent.)

normal i zed power vs. search area(p)
T T T T T T T

L "o .
| "conput ation" -

CokRrkENDWLA
o uvlo vl ow O U o

Figure 6: Power vs. Search area(p)

4.2. Resource Reuse

In principle a search area is larger than a current block.
Therefore overlapped areas exist among the adjacent search
areas. These overlapped areas increase the memory traffic
for a previous frame as a search area increases[7]. In re-
configurable motion estimation, unused hardware resources
or returning resources by reducing the search area can be

used as local memory, resulting in further power saving.
Fig.7 shows the overlapped areas in adjacent search areas.
Unused resources or returning resources from reducing a

M M
2ptn
12
N [2p+n N
o
-~
2p+n
@ (b)

Figure 7: Overlapped area in Search window(a) horizontal
overlapped area (b) vertical overlapped area

search area can be used as local memory to avoid reading
the overlapped area date again.

The following table shows how much power can be saved
by reducing the search area and using the returning re-
sources as local memory.

search Peomp | Prjo Py with
area(p) local memory
8 1.00 1.00 1.00
7 0.78 0.90 0.85
6 0.59 0.81 0.71
5 0.42 0.73 0.58
4 0.28 0.65 0.50

Eq. (4) and (6) were used to estimate Peomp and Prj0,
respectively. FEach term was normalized to 1 when p =
8. The picture size is 720 x 576(CCIR 601 format) and
n = 16. When estimating the Pr;o with local memory, we
assumed that we build local memory only by returning re-
sources from reducing the search area. Returning resources
are first used for local memory for horizontal overlapped
area(Fig.7(a)). If there are more resources than horizon-
tal overlapped area, then the remaining resources are uti-
lized as local memory for vertical overlapped area(Fig.7(b)).
How much local memory can be built from returning re-
sources depends on the FPGAs being used. When we esti-
mate the Pr/o with local memory, we used Xilinx XC6200
series and the estimation results on 2 bits RBMAD in the
next subsection.

By reducing p from 8 to 4, Pcomp reduced by 72 % and
Pr;o with local memory by 50 %. The effect of utilizing
unused or returning resources as local memory is larger than
one may expect. When reducing p from 8 to 5, Pr;c reduced
by 27 % but with local memory total 42 % of reduction in
Py can be obtained.

4.3. Estimation of the Number of CLBs and Re-
configuration time

We estimate the number of Configurable Logic Blocks(CLBs)
and reconfiguration time in Xilinx XC6200 series. To reduce
the hardware complexity, We used 2 bits RBMAD match-
ing criterion[4]. We estimate 23 CLBs are needed for ‘AD
block’ with 2 bits in accumulation and 4 CLBs for ‘R block’.
If 1 bit RBMAD is used, approximately a half of above re-
sources are needed.

As for the reconfiguration time, the XC6200 series re-
quires 40 nsec/cell for reconfiguration[6]. When we change

the search area, p, by one, about 5 usec is needed for 2 bits
RBMAD for reconfiguration. This is a reasonable amount
of time considering that the time interval between two suc-
cessive frames is 33 msec.

5. CONCLUSION

In this paper we proposed a reconfigurable approach to real
time motion estimation. Rather than proposing new archi-
tectures or new matching criteria, we focused on how mo-
tion estimation can get benefits from reconfiguration with
well-known architectures and criteria. We believe that mo-
tion estimation is one of the most appropriate new applica-
tions that can get benefits from reconfiguration. By adjust-
ing the search area according to the changing characteristic
of an input signal, unnecessary computation can be avoided,
hence saving power. More power can be saved by utilizing
the unused resources for local memory. Furthermore the
rate of computation and of reconfiguration required by the
algorithm are well matched by existing FPGA technology.
Future challenges include: 1) reconfiguration to support
more sophisticated motion estimation algorithms, 2) more
detailed performance studies over a wider range of video
sequences, 3) generalization of this concept to other algo-
rithms and architectures, 4) modification to FPGA archi-
tectures to support the use of logic cells as local memory.

6. REFERENCES

[1] D. L. Gall, “MPEG: A video compression standard
for multimedia Applications,” Communications of the
ACM, vol.34, pp.46-58, Apr. 1991.

[2] J. Villasenor, C. Jones, and B. Schoner, “Video com-
munications using rapidly reconfigurable hardware,”
IEEE Trans. Circuits Syst. Video Technol., vol.5,
pp-565-567, Dec. 1995.

[3] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI Ar-
chitectures for Video Compression -A Survey,” Proc.
of IEEE, vol.83, pp.220-246, Feb, 1995.

[4] Y. Baek, H.-S. Oh, and H.-K. Lee, “An efficient block-
matching criterion for motion estimation and its VLSI
implementation”, IEEE Trans. Consum. Elec. Vol.42,
pp-885-892, Nov. 1996

[5] H.Gharavi and M. Mills, “Block-matching motion esti-
mation algorithm - New results”, IEEE Trans. Circuits
Syst. vol.37, pp.649-651, May, 1990

[6] D. Conner, “Reconfigurable Logic: Hardware speed
with Software flexibility,” EDN, pp.53-64, Mar. 28,
1996

[7] F. Cattor, F. Franssen, S. Wuytack, L. Nachtergaele,
and H. De Man, “Global communication and memory
optimizing transformations for low power signal pro-
cessing systems,” Proc. IEEE workshop on VLSI signal
processing, La Jolla, CA, Oct. 1994

[8] Xilinx web site, http://www.xilinx.com

