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ABSTRACT

This paper describes a direct equalization approach for chan-
nels with some underlying structure. A semi-blind approach
is taken here where a small amount of training symbols is
available. A family of MMSE equalizers is obtained that in-
cludes some prior information about the channel structure.
The channel structure assumed in this paper is that the chan-
nel vector lies approximately in the subspace of a matrix as-
sociated with the samples of the transmit pulse shape. Blind
identi�ability issues of the structured equalizer are also ad-
dressed. Numerical results using experimental indoor chan-
nel data indicate that these structured equalizers can achieve
bit error rates that are signi�cantly lower than traditional
non-blind MMSE equalizers.

1 INTRODUCTION

Data communication through severe multipath radio chan-
nel causes inter-symbol interference (ISI) that requires the
use of an equalization device to compensate for the channel
e�ects. Conventional systems require the periodic sending
of data bursts that contain both training data, and regular
information data. The training part may be exploited in
order to acquire the taps of a linear equalizer. The equal-
izer is then used on the received information signal in order
to recover the transmitted symbols, until a new data burst
is transmitted at which the equalization process is repeated.
Conventional training-based equalization methods can su�er
from signi�cant estimation errors due to the limited num-
ber of training symbols. There is considerable interest in
constructing improved estimators that can cope with lim-
ited amount of training. Typically, such improved equalizers
should resort to extra levels of available information:
� Semi-blind estimators: Blind equalization methods es-
timate the equalizer on the basis of the non-training part
[1, 2]. Hence, the regular data provides useful information
too. However, pure blind methods are unable to exploit
the knowledge of the training symbols. In contrast, \semi-
blind" estimators can combine the advantages of blind and
training-based techniques [3, 4].
� Estimators based on prior information: The fact that
the unknown channel contains known transmit and receive
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pulse shaping �lters o�ers an extra source of information for
the receiver design. Speci�cally, the vector of channel coef-
�cients lies approximately in a subspace associated with the
pulse shaping �lter convolution matrix. Previous work has
been done to exploit such channel structure to improve the
performance of blind [5, 6, 7] as well as non-blind channel
estimation techniques [8]. However, there appears to be very
little work on designing direct equalizers that take into ac-
count the underlying channel structure. It is believed that
the estimation of the channel equalizer can bene�t from the
channel structure information.

In this paper, we construct direct equalizers that are able
to exploit information provided by the training symbols, the
information data, and the underlying channel structure al-
together. The equalizers are derived from a minimum mean
square error (MMSE) cost function that contains a cost that
relates to the �nite-sample mean-square error over the train-
ing part of the data and a second cost component that makes
use of the channel structure information. This latter cost
component is derived from projection equations obtained
from the asymptotic MMSE solution. We show that, un-
der certain conditions, the projection equations alone fully
determine a family of channel equalizers.

2 DATA MODEL
Consider the digital communication system in Figure 1,

where g(t) is the impulse response of the transmit �lter1,
c(t) is the physical propagation channel, v(t) is the additive
noise, P is the oversampling factor with respect to the baud
rate T , w represents a discrete time equalizer, and x(t) is
the received signal. The received signal is
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Figure 1: Block diagram of channel and equalizer.

x(t) =
X
n

snh(t� nT ) + v(t) (1)

1Without loss of generality, the e�ects of a receive �lter can
also be included into g(t)



where fsng denotes the data symbols. The overall channel
can be written as

h(t) =

Z Tc

0

g(t� �)c(�)d� (2)

where we assumed c(t) is of �nite duration Tc, and causal.
For all practical purposes, g(t) can also be assumed to have
�nite duration, that is, g(t) = 0 8 t 62 [0; Tg]. By approx-
imating the convolution integral (2) with a �nite Riemann
sum with � (� > 1) terms, we can re-write (2) as

h(t) � �c

��1X
l=0

g (t� l�c) c(l�c) = g
T (t) c (3)

where �c is the discretization interval and is given by �c =
Tc=�, c = �c[c(0); c(�c); � � � ; c((� � 1)�c)]

T , and g(t) =
[g(t); g(t��c); � � � ; g(t� (� � 1)�c)]

T .
Let xk be the oversampled signal vector at the kth symbol

interval, i.e., xk = [x(kT ); x(kT + T=P ); � � � ; x(kT + (P �
1)T=P )]T , and L be the total channel length (L = dTg +
Tc=T e). The data model is then:

xk = Hsk + vk (4)

where sk = [sk; sk�1; � � � ; sk�L+1]
T , vk = [v(kT ); � � � v(kT +

(P � 1)T=P )]T , and H is the P � L channel matrix. In
addition, we can use (3) to establish [8]

h = vec(H) � Gc (5)

where the P L � � pulse shaping matrix G is given
by G = [g00; g10; � � � ;g(P�1)0;g01; � � � ; g(P�1)(L�1)]

T , and
where gjk = [g(kT+jT=P ); � � � ; g(kT+jT=P�(��1)�c)]

T .
The relation (5) indicates that the total vector channel

lies approximately in the subspace spanned by the columns
of G. The approximation error can be made arbitrary small
for \smooth" c(t) by increasing �.

Let the number of symbol spaced taps for the equal-
izer vector w be M (so w is MP � 1) and let yk =
[xTk ;x

T
k�1; � � � ;x

T
k�M+1]

T . Then we can write

yk =Hesk + zk (6)

where esk = [sk; sk�1; � � � ; sk�L�M+2]
T and zk =

[vTk ;v
T
k�1; � � � ;v

T
k�M+1]

T . The MP � (L+M�1) matrixH
is block-Toeplitz and is generated from the P � L channel
matrix H.

The goal of this paper is to exploit the structure (5) and
construct direct equalizers such that wHyk is an estimate of
the data.

3 MMSE EQUALIZERS
We start by considering the conventional minimum mean

square error (MMSE) equalizer based on a training sequence.
We then generalize the MMSE criterion to include a penalty
term that imposes a structured constraint on the equalizer.

3.1 Non-blind MMSE equalizer

In this equalizer, the oversampled channel output is weighted
and summed to produce the desired output. The MP � 1

equalizer weight vectorw is chosen to minimize the expected
squared error, that is,

w(D) = argmin
w

E
���wH

yk � sk�D

���2
where D is a user-chosen integer delay. The optimal weight
vector is given by the Wiener solution

w(D) = R
�1
yyrys(D) (7)

where Ryy is the covariance matrix of yk and rys(D) is the
cross-correlation vector between yk and sk�D.

In practice, we compute the �nite sample estimates of
Ryy and rys(D) using the received samples during the train-
ing period. The optimal weight vector computed from (7)
during the training period is then used for the entire time
slot if the channel does not vary signi�cantly over the slot
period. In addition, the optimal D could be found by opti-
mizing the mean square error with respect to D.

3.2 Structured MMSE equalizers

The non-blind MMSE equalizer does not incorporate any
prior information of the channel structure. However, if we
assume independent symbols, then using (6), it is easily
shown that

rys(D) =HeD+1 ; (8)

where ei is the (L+M �1)�1 unit vector with a one in the
ith position and zeros elsewhere. We make the following two
assumptions: (1) M � L, and (2) M � 1 � D � L� 1. The
�rst assumption ensures that at least one of the columns of
H contains all the columns of H. The second assumption
means that rys(D) contains all the elements of H, which
translates to choosing an equalizer delay where most of the
signal energy is concentrated. With these assumptions and
using (8) and (5), it can be shown that

rys(D) = GDc ; (9)

where

GD =

2
4 0(D�L+1)P��

JG

0(M�D�1)P��

3
5 ; J =

2
4 IP

. .
.

IP

3
5
PL�PL

:

(10)
Let UD be a basis for the null space of GH

D . Then it follows
from (7) and (9) that the MMSE equalizer also satis�es

U
H
DRyyw(D) = 0 : (11)

The relation (11) suggests that the MMSE equalizer lies in
the nullspace of UH

DRyy. This relation is the key to design-
ing a new family of equalizers.

Since (5) is an approximate relation, (11) is also approx-
imately true. However, this structural constraint on the
equalizer allows robust performance against noise as shown
in the simulations. This motivates us to de�ne a new cost
function for designing equalizers. The new cost function in-
cludes (11) as a penalty term and is given by

w(D) = argmin
w

NtX
k=1

���wH
yk � sk�D

���2 + �
���UH

DRyyw
���2 ;

(12)



where Nt is the number of training symbols, Ryy is the
sample covariance matrix of yk taken over all the data, and �
is a non-negative penalty parameter that weighs the relative
importance of the structural constraint as compared to the
non-blind MMSE solution. The solution to (12) is

w(D) =
�
R̂yy + �RyyUDU

H
DRyy

��1
r̂ys(D) ; (13)

where R̂yy and r̂ys(D) indicate estimates based on the train-
ing sequence alone. Depending on the value of �, di�erent
equalizers can be obtained. For example, for � = 0, the
non-blind MMSE equalizer is obtained. For positive values
of �, a family of structured equalizers is obtained.

4 BLIND IDENTIFIABILITY
The case of � ! 1 suggests an approach for obtaining

blind structured equalizers. We consider the issue of identi-
fying w based on the subspace constraint (11). We consider
the case when � ! 1 under a noise-free assumption. The
following result addresses the blind identi�ability of equaliz-
ers w based on (11):
Proposition 4.1 Suppose that MP � � > L +M � 1 and
[ eH;GD] has full column rank, where eH is the matrix H
with the (D + 1)th column removed, then (i) the rank of

Q
4
= UH

DRyy is given by M + L� 2, and (ii) all solutions
to (11) are channel equalizers:

w
H(D)H = eHD+1 (14)

where  is an arbitrary scalar.

� Proof: The proof is sketched as follows. In the noise free
case, we have Ryy =HH

H , hence:

Q = U
H
DHH

H

SinceH hasM+L�1 columns andUH
D hasMP�� rows, the

rank of Q is at mostM+L�1. In fact the rank drops by one
because the (D+1)th column of H is by construction in the
null space of UH

D . Then the rank is at most L+M�2. Sup-
pose that 9 some � 6= 0 s.t. UH

D
eH � = 0, then eH� = GD�

for some non-zero �. Under the hypothesis that [ eH;GD] has
full column rank, it follows by contradiction that the rank of
Q is exactly L+M�2. Result (ii) comes from the following:
all solutions of (14) must satisfy (11). The solutions of (14)
span a subspace of dimension MP �M � L + 2. From (i),
the solutions of (11) span a subspace of similar dimension.
Therefore, (11) determines all the channel equalizers.

Note that, in the presence of noise, the solutions of (11)
become approximate equalizers. This analysis above shows
that the new cost function (12) can be interpreted as a mix-
ture between non-blind and blind schemes, with the \blind-
ness" of the equalizer emphasized by the parameter �.

5 SIMULATION RESULTS
To investigate the performance of the structured MMSE

equalizers, we consider a digital communication example
where the true channel c(t) is obtained from experimental
channel impulse response (CIR) data measured at 2.4 GHz

in an indoor environment [9]. Figure 2 shows the CIRs for
two channels: line-of-sight (LOS) and non-LOS. The LOS
CIR has a smaller delay spread than the non-LOS. The time
slot length used is 300 symbols and a training preamble of
25 symbols is assumed. The transmit �lter frequency re-
sponse is a raised cosine with 35% roll-o� factor where the
impulse response is truncated to 6 symbol durations. An
oversampling factor of two is used and � = 4.

Figure 3 shows typical equalizer outputs for the non-LOS
channel data for a single time slot with 300 QPSK symbols.
The various parameters are: SNR = 10 dB, � = 0:2, and
M = L+2. We observe that the structured equalizer output
has less variance than the non-blind MMSE equalizer.

Figures 4 and 5 show the improvement in BER of the
structured equalizers as compared to the non-blind MMSE
equalizer for BPSK data for low to moderate SNRs for the
LOS and non-LOS channel data respectively. We observe
that for low to moderate SNR, the simulated values of � gave
almost the same BER performance and they are superior to
the non-blind (� = 0) equalizer. At high SNR, we see that
the BERs of the structured equalizers appear to saturate.
This is suggested by the fact that structured equalizers are
biased since they rely on the approximate relation in (5).
At a target BER of 10�2 we get SNR gains of 5 dB for
both the LOS and non-LOS channel data. If we assume
that the true channel vector satis�es (5) exactly, then the
structured MMSE equalizers still outperform the non-blind
MMSE equalizer for higher SNRs. This is shown in Figure
6.

6 CONCLUDING REMARKS

We have developed direct semi-blind structured MMSE
equalizers that can outperform traditional training-based
MMSE equalizers in noise-limited environments. The op-
timal choice of � for given values of SNR, training length,
and number of equalizer taps requires further investigation.
This paper also proposes a novel blind equalization criterion
as a by product. Many extensions of the proposed equalizers
are possible. For example, other channel information such
as known directions of arrival and delays of multipath in a
specular channel could be used to obtain other structured
equalizers. The extension to multiple antennas for designing
space-time structured MMSE equalizers that can deal with
co-channel interferences is straightforward. Another possible
area to explore is to design structured adaptive equalizers to
deal with time-varying channels.
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non-LOS (right).
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Figure 4: BER for the structured and non-blind MMSE
equalizers for the LOS channel.

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Non−LOS channel

alpha = 0  
alpha = 0.1
alpha = 0.2
alpha = 0.5
alpha = 0.8
alpha =1   
alpha = 5  
alpha = 10 

Figure 5: BER for the structured and non-blind MMSE
equalizers for the non-LOS channel.
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Figure 6: BER for the structured and non-blind MMSE
equalizers with exact non-LOS channel taps.


