
A FLEXIBLE PROCESSOR ARCHITECTURE FOR
MPEG-4 IMAGE COMPOSITING

M. Berekovic, R. Frase, P. Pirsch

Laboratorium für Informationstechnologie
Schneiderberg 32, 30167 Hannover,

Universität Hannover, Germany

ABSTRACT
This paper proposes a new array architecture for MPEG-4 image
compositing. The emerging MPEG4 standard for multimedia
applications allows script-based compositing of audiovisual
scenes from multiple audio and visual objects. MPEG-4
supports both, natural (video) and synthetic (3D) visual objects
or a combination of both. Objects can be manipulated, e.g.
positioned, rotated, warped or duplicated by user interaction. A
coprocessor architecture is presented, that works in parallel to an
MPEG-4 video- and audio-decoder, and performs computation
and bandwidth intensive low-level tasks for image compositing.
The processor consists of an SIMD array of 16 DSPs to reach
the required processing power for real-time image warping,
alpha-blending and 3D rendering tasks. A programmable
architecture allows to adapt processing resources to the specific
needs of different tasks and applications. The processor has an
object-oriented cache architecture with 2D virtual address space
(e.g. textures), that allows concurrent and conflict-free access to
shared data objects for all 16 DSPs. Especially I/O intensive
tasks like texture-mapping, alpha-blending, image warping, z-
buffer and shading algorithms benefit from shared memory
caches and the possibility to preload data before it is accessed.

1. INTRODUCTION

The MPEG-4 standard, currently under development, shall
deliver a standardized framework for all kind of multimedia
applications: Examples include teleshopping, interactive, web-
based games, edutainment, teleconferencing as well as mobile
video-communication. This goal is achieved through an object-
based approach for description and coding of multimedia
contents.

In MPEG-4, audiovisual scenes are composed from multiple
audio and visual objects that are coded separately. Information
for scene composition is transmitted with the bitstream in a
binary format for scene description (BIFS). At the decoder side,
this information is used, together with inputs from the user, to
composite the scene with audio and visual objects. User
interaction like duplication, moving or zooming of objects shall
be supported. Figure 1 shows a typical example from a news
scene, where two video objects of the speakers have been
extracted. In the decoder, they can be composited with arbitrary
backgrounds and other visual objects like text overlays or
rendered 3D-objects (virtual studio applications).

Figure 1. Typical application for MPEG-4 image
compositing using multiple visual objects.

Figure 2 shows the block diagram of an MPEG-4 decoder. The
incoming bitstream is demultiplexed into several elementary
streams. After syntax decode and bitstream parsing, scene-
description, control information and variable-length coded data
of audiovisual objects are extracted. These objects are then
decompressed and collected in an object pool memory. The scene
is generated in the compositor from this data basis. In this final
step objects may be manipulated, e.g. zoomed, moved, rotated or
even cuted from the scene. Compositing includes complete 3D
rendering of synthetic objects using a VRML-like scene
description in binary format (BIFS).

Demultiplex
Syntax

Decoding Composition

Bitstream

elementary
Objects

Compositing
information

Interaction

Video

Audio

Decompression

Figure 2. Block diagram of an MPEG-4 decoder.

Compared to existing video and audio coding standards like
H.263 [1] or MPEG-2 [2], arithmetic complexity of MPEG-4 [3]
decoders will increase significantly. This is mainly caused by the
overhead introduced for the handling, decoding and compositing
of multiple objects. Typical compositing tasks like alpha
blending, image warping or 3D-rendering involve large amounts
of low-level processing and I/O transfers.

Dedicated and programmable single-chip implementations have
been proposed for existing video coding standards
[4][5][6][7][8]. Instruction set extensions for general purpose
processors have proven advantageous for many multimedia
signal processing algorithms [9]. However, none of these
solutions is adapted to the requirements of scene compositing.
Especially real-time image warping and 3D rendering pose major
problems to existing multimedia systems.

Several chips that support 3D rendering in hardware are known
from literature [10]. The main disadvantage of these solutions is
that their are adapted to the specific needs of 3D rendering, but
they do not meet the demands of typical multimedia systems like
object-oriented processing of data, integration of natural and
synthetic visual objects, synchronization of audio and video
objects, real-time processing of large textures (e.g. MPEG-2
video streams) or format conversions in real-time. However, the
biggest problem they face is their inflexibility to allocate
processing resources, both arithmetic units and caches, to
different algorithms at different points of time. Although general
purpose processors fulfill this requirement, they still lack
performance for real-time processing of multimedia data.

We present a new array architecture, that has been designed to
meet the specific demands of MPEG-4 scene compositing. This
includes processing of arbitrarily sized 2D-objects, integration of
3D rendering and video display, real-time image warping and
blending at TV quality. The architecture is based on a 2D mesh
array of DSPs with autonomous SIMD controlling (A-SIMD). A
new cache architecture is presented, that is adapted to the needs
of parallel processing of 2D-objects, which is quite typical for
image processing, video-coding and 3D rendering tasks.

This paper is organized as follows: The second section gives an
overview of typical image compositing tasks and their processing
requirements. The third section describes the presented array
architecture with a novel object-oriented data cache while the last
section will summarize the results.

2. ALGORITHM REQUIREMENTS

Compositing consists of multiple, optional tasks that are
performed on 2D or 3D image data. Incoming 2D video objects
can be repositioned, zoomed or even warped (full perspective
transform). 3D objects can be rotated and moved in three
dimensions. They are represented by meshes and corresponding
textures.

Figure 4 shows the 3D rendering pipeline. It is subdivided into
front-end calculations for the geometry setup, that typically
involve floating-point operations and the back-end processing for
rasterization, that is performed on large amounts of (pixel)
integer data. Rasterization consists of texture mapping, bi- or
trilinear interpolation, shading and z-buffer algorithm. It should

be noted, that texture mapping with bilinear interpolation is quite
similar to the image warping algorithm, foreseen by MPEG-4.
Other high performance applications are thinkable. Data from a
video stream could be used as textures in 3D scenes instead of
rather static images.

Front-End-System Back-End-System

Model-
Transfor-
mation

Visibility Lighting Projection
Transform
of
Coordinates

Rasteri-
zation

Figure 3. 3D rendering pipeline consisting of front-end
and back-end computations

Figure 4 shows the system architecture of a MPEG-4 decoder
system. Memory for the video-objects is shared between decoder
processor and compositor processor. The compositor itself
consists of two parts: the front-end system and the back-end
(rasterizer). The proposed DSP array architecture is optimized for
the processing of data-intensive low-level tasks. Due to the
similarities in processing requirements, it is used for the back-
end processing and for compositing of 2D video data (image
filtering, warping and alpha blending). However, another
processing module that supports floating-point operations is
needed for the front-end system. It can run fully parallel to the
video-decoding and compositing processors.

Video-
decoder

CompositorVOP-
Buffer

local
memory

Frame

Buffer

local
memory

outVideo-
data

Figure 4. System architecture of a MPEG-4 decoder.

Table 1 summarizes front-end and back-end arithmetical
requirements of 3D rendering. Many (costly) division operations
are needed for back-end processing, especially for the calculation
of the texture addresses. In a typical multimedia scenario,
depending on number and size of the video-objects, a similar
amount of operations is needed for image warping and alpha
blending of 2D video objects. Since these parameters are
application-dependent and can be changed by user interaction, it
is not possible to give deterministic performance requirements
for an MPEG-4 decoder system (as is the case for MPEG-2).

Triangles/
sec

Front-End

[MFLOPs]

Front-End

[MDIVs]

Back-End

[MFLOPs]

Back-End

[MDIVs]

105x40 pix 39 1 162 10

106x40 pix 390 9 1612 100

16x100 pix 39 1 1930 23

106x100 pix 390 9 3860 233

Table 1. Performance requirements for 3D rendering

Figure 5 shows the typical programming model for 2D-image
filtering, which is similar for most image processing tasks. An
input object with 2D data structures is processed with a smaller
2D object (the filter mask). As a result, a third object is
generated. All three objects have 2D address spaces, that can
differ in size.

Convo-
lution

Ah

Ah

Ah

Av
Av

0

40

0

511

511

255

255

Object #1: Input image

Object #2: Filter mask

Object #3: Output image

Av
4

Figure 5. Typical 2D image processing scheme

Parallelization strategy is crucial for the performance of image
processing systems. Figure 6 shows two possible MIMD-style
parallelization schemes. The processing elements (PEs, here:
DSPs), can either process different segments of the target image
or different objects (here: triangles) in parallel. Parallelization on
different segments will reduce utilization, since 2D objects are
not equally distributed between image segments. The problem for
parallelization on 2D objects (right side of Fig. 6) is, that since
objects can be located at the same space in the image access
conflicts for depth-information (z-, frame-buffer) occur, leading
to a performance degradation.

PE5

PE2

PE6

PE3 PE4

PE8

PE1

PE7

Z-Buffer

Frame
Buffer

PE3

PE2

PE1

Figure 6. MIMD-style parallelization on segments (left)
or objects (right)

We selected a parallelization scheme within objects, that allows
simpler SIMD-style processing. Fig. 7 shows the parallelization
of scanline algorithms for the processing of triangle data, that are
very common in 3D rendering. Different PEs can operate either
with different image lines or columns. Furthermore, matrix-
shaped access patterns are possible.

Column-Scan

Row-Scan

Matrix-
Scan

geometrical arrangement
of the DSPs

Figure 7. Parallelization of scan-line algorithms

3. ARRAY PROCESSOR ARCHITECTURE

An array architecture consisting of 16 programmable DSPs, each
of them capable to executes up to 3 instructions per cycle, meets
the demanding processing requirements of typical image
compositing tasks. A parallel shared memory cache architecture
delivers the bandwidth that is needed for real-time processing of
video-streams. Figure 8 shows the basic concept of the DSP array
processor architecture.

DP DP

MEMORY CROSSBAR

.
Obj. A

Obj. B

Obj. B

I/O-CONTROL

Transformation Table

Obj. A Obj.

B

Obj. C Obj

D

External Sytem Memory

Ext. Bus

VIDEOSIGNAL PROCESSOR

Obj. A

Object parameters

C
O

N
T

R
O

L

A
d

d
re

ss

g
en

er
at

io
n

Registerfile

Data arithmetic

Address arithmetic

Hit/Miss detection

DP

DP DP

DATAPATH CLUSTER

MEMORY
BANKS

Figure 8. Processor architecture (with 4 DSPs)

3.1 Parallelization Strategy

It has been shown, that SIMD parallel processing fits the needs
of rendering and compositing algorithms. However, an extension
of this concept for autonomous addressing of local data and
conditional execution of instructions within the DSPs proves
very useful for parallelization of many algorithms (ASIMD) [11].

3.2 Parallel Cache Architecture

Compositor performance greatly benefits from concurrent and
conflict-free access to 2D image, texture and Z-buffer data that is
hold in on-chip cache memories. A shared memory cache has
been implemented, that allows conflict-free access to multiple
objects with arbitrary size and 1D or 2D address space [12][13].
Figure 9 shows the basic principle of the cache architecture. The
DSPs have parallel access to shared image data, that is stored in a
2D array of memory blocks that are connected to the DSPs via
configurable crossbars. In the shown example, 9 memory blocks
are needed to enable concurrent, conflict-free access for four
DSPs. The processors can access 2D objects either in matrix or
vector form. Once defined, an access-style for an object cannot
be changed without cache-flush. The position of matrix or vector
access can be arbitrarily changed every clock-cycle. Furthermore,
as shown in figure 9, undersampling is possible. In the shown
example, the processors can leave out one or three samples.
However, if two samples are skipped, all 4 datapaths need access
to the same memory block, resulting in 3 stall cycles.

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

3 4 5
6 7 8

3 4 5
6 7 8

0 1 2 0 1 2

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

3 4 5
6 7 8

3 4 5
6 7 8

0 1 2 0 1 2

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

3 4 5
6 7 8

3 4 5
6 7 8

0 1 2 0 1 2

1 2
4 5

4 3
1 0

8 6
5 3

0
3
6
0
3
6
0
3
6

Accessing data paths

. .
 .

. . .

Figure 9. Cache organization with 9 memory-blocks.

Figure 10 shows, how concurrent cache access with autonomous,
independant address calculation within the DSPs is utilized for
3D texture mapping and 2D image warping. Following this
principle, 2D arrays of pixels can be processed in parallel,
leading to a linear speedup, as long as the cache miss rate and
access conflicts do not increase significantly.

u

v

Data-
Paths

Texture Cache

Inverse Perspective
Transform

Figure 10. Parallel access to texture cache.

3.3 Data Path Architecture

Figure 11 shows the architecture of the DSP datapath. It consists
of a register file of 16 32-bit registers and four different
arithmetic modules, a 32 bit splitable ALU, a 32 bit splitable
MAC unit, a shift and round unit as well as a division module.
Up to three instructions can be executed every clock-cycle.

IMMEDIATE I

ALU

SFT/

MUL A
C

C

64

64

32

32

32

32

32

RND

32

32

DPLR

R14/R15

R0/R1

D
D
D

IMMEDIATE II

D
D
D

32

32

32

32

STATI DPSR16

DP-
Control

16

32

DIV

32

32

32

64

Load

Figure 11. Architecture of the DSP datapath.

4. SUMMARY

We have presented the concept of a new array processor
architecture for MPEG-4 compositing. The architecture is
optimized to process typical compositing tasks such as 3D
rendering, filtering, format conversion or alpha blending in
parallel using 16 DSPs that are autonomously SIMD controlled.
An object-oriented cache is provided, that allows parallel,
conflict-free access to multiple image data objects of different
size and dimension. Address calculation is performed in parallel
to arithmetic processing within the cache unit. Programming is
significantly simplified by a 1D/2D virtual address memory
model with support for handling of multiple-objects. Translation
from virtual internal to physical external addresses is done fully
in hardware in Cache and DMA units. Using sophisticated RAM
technology like RAMBUS, high performance multimedia
applications based on MPEG-4 will become feasible.

5. REFERENCES
[1] ITU-T Draft Recommendation H.263: “Video Coding for

Low Bitrate Communication”. July 1995.
[2] ISO/IEC 13818-2 “Generic coding of moving pictures and

associated audio”. (MPEG-2), Part2: Video, November
1993.

[3] ISO/IEC JTC/SC29/WG11 “MPEG-4 video verification
model V8.0”. MPEG96/N1796 July 1997.

[4] Turley, J. “Toshiba, TI Roll Out Set-Top Box Chips”.
Microprocessor Report, Vol. 10, No. 7, p. 16, 1996.

[5] Pirsch, P., Demassieux, N., Gehrke, W. “VLSI
Architectures for Video Compression – A Survey”.
Proceedings of the IEEE, Vol. 83, No.2, pp. 220-246,
February 1995.

[6] Glaskowski, P. N. “First Media Processors Reach the
Market”. Microprocessor Report, Vol. 11, No. 1, pp. 10-16,
Jan. 1997.

[7] Pirsch, P., Freimann, A., Berekovic, M. “Multimedia Signal
Processors”. Multimedia Hardware Architectures in
Proceedings SPIE Vol. 3021, pp. 2-13, 1997.

[8] Slavenburg, G. A., Rathnam,, S., Diskstra, H. “The
Trimedia TM-1 PCI VLIW Media Processor”. Proceedings
Notebook for Hot Chips VIII, pp. 171-177, Stanford, 1996.

[9] Lee, R. B. “Subword Parallelism with MAX-2”. IEEE
micro, Vol. 16, No. 4, pp. 51-59, August, 1996.

[10] Glaskowski, P. N. ”3D Chips Break Megatriangle Barrier”.
Microprocessor Report, Vol. 11, No. 7, pp. 16-21, 1997.

[11] Kneip, J., Berekovic, M., Wittenburg, J. P., Hinrichs, W.,
Pirsch, P. ”An Algorithm Adapted Autonomous Controlling
Concept for a Parallel Single-Chip Digital Signal
Processor”. Journal of VLSI Signal Processing 16, Vol. 11,
No. 1, pp. 31-40, May 1997.

[12] Volkers, H. “Ein Beitrag zu Speicherarchitekturen
programmierbarer Multiprozessoren der Bildverarbeitung”.
PhD thesis, VDI Fortschrittsberichte, Reihe 9, Nr. 211, VDI
Verlag 1992.

[13] Kneip, J., “Objektorientierte Cache-Speicher für
programmierbare monolithische Mutiprozessoren in der
digitalen Bildverarbeitung”. PhD thesis, University of
Hannover, 1997.

