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ABSTRACT

Blind Signal Separation (BSS) is a powerful technique for
separation of mixed signals with weak assumptions on the
incoming signals. The objectives of BSS are analogous to
the objectives of Exploratory Projection Pursuit which is
widely used in the statistical community for finding
structure in high dimensional data sets. In this paper, we
adapt Exploratory Projection pursuit for BSS. First, we
introduce Exploratory Projection Pursuit and the associated
projection pursuit index (PPI). We adapt the PPI for
application to BSS. We also investigate the order of
approximation required to achieve satisfactory separation
using the PPI, and compare its performance to a maximum-

likelihood BSS technique wusing a Gram-Charlier
Expansion.

INTRODUCTION
Signal Model

We make the standard assumptions on the signal model for
bind signal separation, i.e. independently distributed
signals are linearly mixed by a mixing matrix A:
x=As+n (D

where n is AWGN. We assume real signals, real noise, and
a real mixing matrix. We will vary the noise in our
simulations, but we ignore the noise for the purposes of
analysis.

Exploratory Projection Pursuit

We will give a brief introduction to Exploratory Projection
Pursuit. Full details of the algorithm are discussed in [4].
Projection pursuit is a statistical method for function
approximation (and density estimation) using a
representation as a product of one dimensional functions:
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As with blind signal separation, projection pursuit first
does a sphering of the data. This consists of determining
the sample covariance matrix of the incoming data, the
SVD of the covariance matrix into VDV’ where V is the
matrix of eigenvectors and D is the diagonal matrix of

eigenvalues. When these are applied to the incoming data,
X (which is here assumed to have mean zero):
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the resulting data Z has unit variance in all projection
directions. As shown by Harroy-Lacoume [5], this
recovers the column space eigenvectors and eigenvalues of
the mixing matrix A, but the matrix of row space
eigenvectors (a unitary matrix) cannot be recovered from
the correlation matrix.
The criterion projection pursuit uses to find approximation
directions (‘interesting’ directions) is the distance of the
one dimensional density estimate in a particular direction
from the Gaussian density. In previous methods [3], this
distance from Gaussianity was measured using a Kullback-
Leibler divergence which amounted to maximum-
likelihood density estimation. The PPI measures distance
from Gaussianity in a different way: by passing the data
through an error function transformation and estimating
the resulting data density using Legendre polynomials.
Because the Legendre polynomials are only applicable
over the range [-1,1] and to remove any multiplicative
Gaussian factor in the density, the data is passed through
an error function nonlinearity prior to being estimated:
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where ¢ is the error function (Gaussian cumulative
distribution function) and « is a vector along which the
data density is estimated. The ¢ function forces all the
data in the range [-o0, ] to lie in the range [0,1], and
divides the data density by a Gaussian density thus
removing any Gaussian component of the data density.
The index used to determine interesting directions is the
following;:

J
H@)=1) Qj+DER(P(R) (5
J=1

where P; is the jth Legendre polynomial and .J is the
number of terms in the Legendre expansion of the density.
The motivation for using the Legendre polynomials lies in
their ease of computation. The recursion equations for the
jth Legendre polynomial are given by:
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The equations for the derivative are also straightforward if
one wanted to do gradient descent. Friedman uses gradient
descent as well as coarse search to find ‘interesting
directions’. However, we found gradient descent to be
problematic for BSS and avoided its use altogether. The
reasons are discussed in the Body of this paper.

Blind signal separation

Blind signal separation is the recovery of signals that have
been linearly combined with a mixing matrix A as in the
signal model above. A is assumed nonsingular. As in
projection pursuit, the signal model is often modified by
taking the correlation matrix of the incoming data,
determining its SVD, and projecting the data onto the
signal subspace and scaling so that the resulting data has
unit variance in all directions. The SVD of the mixing
matrix can be recovered in this way except for a unitary
matrix, producing the following model of the projected and
scaled incoming data:

z=Us+ Bn
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where U is a unitary matrix. Standard methods for
recovering the unitary transformation are based on density
estimation using cumulants [3,5], cumulant matching [2],
density estimation using kernels [7], temporal processing
with joint diagonalization of correlation matrices [1]. The
density estimation methods assume i.i.d. sources and write
the joint pdf as a product of one dimensional pdf’s. The
one dimensional pdf’s are estimated as linear combinations
of Hermite polynomials where the polynomial coefficients
are cumulants of the data.

PROJECTION PURSUIT INDEX FOR BSS

Modifications of PPI for BSS

Since we know the projection directions of the sources are
orthogonal, and each source direction should correspond to
an ‘interesting’ direction in the PPI sense, we modify the
PPI to include both directions simultaneously. We restrict
ourselves to 2 independently distributed real input signals
and a real mixing matrices so that the unitary matrix may
be parametrized as the orthonormal transformation in the
following way:
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We modify the PPI to the sum of the projection pursuit
index in orthonormal directions:
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Since the 1-d densities in the orthogonal directions are
both farthest away from Gaussian (relative to other pairs of
orthogonal directions), this composite index should be
more robust than the PPI in either projection direction
alone.

Interpretation of PPI BSS relative to Edgeworth
expansion

The application of the Gaussian transformation to the data
in each projection direction improves robustness to
outliers, forces the data into the range [-1,1] so that the
Legendre polynomials may be used, and divides the output
density by a Gaussian density causing the estimate to
approach the Edgeworth expansion. The Edgeworth
expansion is the expansion around a Gaussian density
using cumulants. The estimating density is assumed to
have the form:
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where ¢ is a Gaussian density, x are cumulants and / are
Hermite Polynomials. The notation follows that of [6].
Now, the data passed through the Gaussian distribution
function in the projection pursuit technique has the form:
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so that if the incoming data is assumed to have the density
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and this is the density that is estimated using Legendre
polynomials. Thus, the density that Edgeworth attempts to
approximate using Hermite polynomials, PPI BSS
estimates using Legendre polynomials. Since the recursion
equation for Legendre polynomials involves only other
Legendre polynomials, it is easy to compute. This gives an
interpretation of the relation between the Projection
pursuit technique and the standard Edgeworth (or related
Gram-Charlier) expansion (see [6]).



SIMULATIONS

Procedure

We tested the projection pursuit index against the first
maximum-likelihood estimator of Harroy-Lacoume as
presented in [5]

P/ sin(49,
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Both estimators were used to determine the rotation angle
of data generated according to the product of 2 one-
dimensional distributions and passed through a mixing
matrix. Laplace and uniform distributions were used to
generate the data. We also varied the following parameters
to determine their effect on the estimation accuracy:
number of samples of the data, rotation angle, order of the
ppi estimate, resolution of the ppi search, and noise level.
All simulations were done in Matlab.

As mentioned in the introduction, we encountered difficulty
in doing gradient descent to find the rotation angle.
Because even high dimensional BSS can be reduced to
compositions of 2 dimensional rotations, we opted to do
BSS over two dimensions at a time. This restricted the
search space of rotation angles to [-n/4,n/4]. The search
space being so small, we could reasonably carry out brute
force search of the PPI at the rotation angles over the range
of interest. We did this intelligently using the following
algorithm analogous to Comon[3]:

determine PPI at 6=0

for k=1:n
if PP1 at 6+1t/2%'" is > PPI at 0
6= 0+n/2"";
else if PPI at 0-7/2%"" is > PPI at 0
6= 0-1/2"";
end
end

this does a binary search of the range space producing an
estimate of the rotation angle to within 7/2*"" in k steps.

Results

Below, we show the estimation accuracy of the rotation
angle estimate as a function of the order used to determine
the PPI. We carried out this analysis for both uniform and
Laplace densities as done in [5]. As expected, for densities
far from Gaussian, such as the uniform, a much larger order
is required to obtain good angle estimates. The Laplacian
density, being much closer to the Gaussian, required lower
order Legendre polynomials to obtain good estimates.
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Figure 1: Error in rotation angle as a function of
order of Legendre polynomial approximation for
uniform density.
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Figure 2: Error in rotation angle as a function of
order of Legendre Polynomial Approximation for
Laplacian Density.

This is consistent with the observations of Friedman et. al.
[4] who claim that the ability to find interesting directions
is not critically dependent on the order J as long as J is in
the range [4,8] and sample sizes are not small.

We also compared the PPI to the Gram-Charlier estimator
(as proposed by Harroy-Lacoume) in estimating the
rotation angle. The bias in the estimate as a function of
the rotation angle are shown in graphs below. The data
were distributed according to the joint uniform and
Laplacian densities mentioned above. This data was taken
at an SNR of 10db and 5000 samples, but the same
catastrophic increase in error occurs for the Gram-Charlier
estimate at signal SNR’s of 6dB and 20dB and sample
sizes of 500 and 2000 samples at a rotation angle of
approximately 23 degrees. The PPl performs uniformly
well across all rotation angles.
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Figure 3: Error in rotation angle estimate as a
function of rotation angle for Gram-Charlier method
(top graph) and PPl method (bottom graph). The
Gram-Charlier method has catastrophic increase in
error for rotation angle> 23 degrees.

DISCUSSION

Comparison of PPI with Gram-Charlier

expansion

The PPI has several advantages over log-likelihood with
the Gram-Charlier expansion. In particular, the Gram-
Charlier estimator is limited to null skewness and kurtosis
within the range [0,4] ([5], p170). The PPI is not limited in
this way. This may explain the failure of the Gram-Charlier
estimate at large rotation angles (i.e.>23 degrees).

In fact, although Harroy and Lacoume claim they are using
the Gram-Charlier expansion, their result also holds for the
Edgeworth expansion for a symmetric density (such as we
are using here). The Edgeworth expansion is simply a
Gram-Charlier expansion except that terms that converge at
the same rate are grouped together. But in the Edgeworth
expansion, the 3" order cumulants and 5" order cumulants
vanish for symmetric pdf’s so the remaining terms in the
Edgeworth expansion [6]vanish. Thus, in the symmetric
pdf case, the Gram-Charlier and Edgeworth expansions
would produce the same estimate.

CONCLUSION

We have presented Exploratory Projection Pursuit
technique and adapted it to Blind Signal Separation. We
have also explored its connection with the maximum-
likelihood using the Gram-Charlier expansion. We have
tested the technique on some standard densities to study the
order required for good rotation angle estimates. We have
also compared its performance to a standard rotation angle
estimator.
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