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ABSTRACT

Linear prediction (LP) analysis is widely used in
speech recognition for representing the short time
spectral envelope information of speech. The pre-
dictive residues are usually ignored in LP analy-
sis based speech recognition system. In this study,
the normalized residual error based on LP is intro-
duced and the performance of the recognizer has
been further improved by the addition of this new
feature along with its �rst and second order deriva-
tive parameters. The convergence property of the
training procedure based on the minimum classi�-
cation error (MCE) approach is investigated, and
experimental results on city name recognition task
demonstrated a 8% string error rate reduction by
using the extended feature set as compared to con-
ventional feature set.

1. INTRODUCTION

Speech recognizers have traditionally utilized cep-
stral parameters derived from linear predictive
(LP) analysis due to its ability to provide a rea-
sonable source-tract separation. This analysis as-
sumes the speech signal to follow an all-pole model
and the importance of this method lies in its rel-
ative speed of computation. A by-product of the
LP analysis is the generation of an error or resid-
ual signal. If the all-pole model is perfect then the
speech samples are predictable so that the resid-
ual signal is very small. The prediction residual
signal essentially carries all information that has
not been captured by the LP coe�cients. Recent
study shows that the LP residual can be exploited
for enhancement of speech in the presence of addi-
tive noise [9]. In speech recognition the LP resid-
ual is usually ignored and only the LP cepstral
coe�cients are used as a basic feature set [1, 6].
Combining the LP ananlysis and residual analy-

sis could potentially produce improved speech fea-

tures. This can be done in several ways. For ex-
ample, one could compute the cepstrum of the LP
residual and then append this feature with the tra-
ditional LP cepstral features. Residual cepstrum is
currently being used in speaker veri�cation [8] and
speaker identi�cation [7] applications with great
success. Another approach is to compute the LP
cepstral coe�cients in a conventional way and aug-
ment the normalized LPC error as an additional
feature into the existing cepstral feature set. In
this study both the LP cepstrum and normalized
LP error have been utilized.
We restrict our presentation to only the recog-

nizer based on hidden Markov model (HMM) ap-
proach using continuous density mixtures to char-
acterize the states of the HMM. We call the HMM
using the new feature set as HMM-II and the
the model using the cepstral coe�cients alone is
represented by HMM-I. In this work we describe
an algorithm to calculate features from residual
signals and apply these features in a speaker in-
dependent continuous speech recognition experi-
ment. We show that features obtained from the
residual signals using this method contain impor-
tant information for speech discrimination and can
be exploited for telephone based speech recogni-
tion tasks.

2. COMPUTATION OF NORMALIZED LPC
ERROR

The LP analysis converts each frame of p+1 auto-
correlations into p LP coe�cients as given in the
following Durbin's recursive algorithm:
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where the summation in the second equation is
omitted for i = 1 and r(i) is the autocorrelation
coe�cient of lag i. The �ve set of linear equations
are solved iteratively for i = 1; 2; � � � ; p and the
�nal solution is given as

�
(p)
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kj = PARCOR coefficients

Note that the quatity E(i) is the prediction er-
ror for a predictor of order i. Thus at each stage
of the computation the prediction error for a pre-
dictor of order i can be monitored. Also, if the
autocorrelation coe�cients r(i) are replaced by
a set of normalized autocorrelation coe�cients,
R(k) = r(k)=r(0), the Durbin's recursive solution
remains unchanged. However, the errorE(i) is now
interpreted as a normalized error and is given by:
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The normalized error for i = p can also be written
in the form

V (p) =
pY

i=1

(1� k2i )

where the quantities ki are the PARCOR coe�-
cients and are in the range �1 � ki � 1 therby gu-
ranteeing the stability of the LPC analyzer. The
parameter V (p) can vary from 0 to 1. Thus the
normalized LPC prediction error is extracted for
every frame of speech.
To illustrate the nature of the error signal Figure

1 shows the actual speech waveform and the corre-
sponding normalized prediction error for the word
\Chicago Illinois" spoken by a female speaker. It
is observed that the normalized prediction error
steadily decreases for voiced sections of speech.
For unvoiced sections of speech the error starts
increasing signi�cantly higher than for voiced por-
tion of speech. This is expected since the all-pole
model for unvoiced speech is nowhere near as ac-
curate as it is for voiced speech.

3. FEATURE ANALYSIS

The speech input is sampled at 8kHz and preem-
phasized using a �rst-order �lter with a coe�cient
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Figure 1. Speech from the word \Chicago Illinois"
spoken by a female. Top plot shows the original
speech and bottom plot shows the normalized LPC
error.

of 0.97. The samples are blocked into overlapping
frames of 30 msec in duration, where the over-
lap is set to 20 msec. Each frame is windowed
with a Hamming window and then processed us-
ing a 10th-order LPC analyzer. The LPC coe�-
cients are then converted to cepstral coe�cients,
where only the �rst 12 coe�cients are retained.
The baseline recognizer feature set consists of 36
features that includes the 12 liftered cepstral co-
ee�cients and their �rst and second order deriva-
tives [3]. The extended feature vector used in this
study has 39 parameters, including the baseline
36 features, normalized lpc error parameter and
their �rst and second order derivatives. Since the
signal has been recorded under various telephone
conditions and with di�erent transducer equip-
ment, each cepstral vector was further processed
using the hierarchical signal bias removal (HSBR)
method in order to reduce the e�ect of channel
distortion [2].

4. SPEECH DATABASE

The experimental results are based on a continu-
ous speech database containing speech utterences
recorded over the telephone network in a U.S.
wide data collection covering the di�erent dialect
regions. Male and female speakers were fairly
equally represented. The training set consists of
9865 generic phrases and the testing set contains
3620 spontaneous utterences of city name followed
by either a state or a country name, for example,



Seattle Washington. The large vocabulary con-
tinuous speech recognition task involves speaker
independent city name recognition where the rec-
ognizer lexicon consists of 448 entries plus silence
with one lexicon entry per word. A word insertion
penalty was used which is the same for all speak-
ers. The grammar used in the recognition is the
standard word pair grammar.

5. HMM RECOGNIZER

The subword model set used in the recognition
consists of 41 context independent units [4]. Each
subword is modeled by a three state left-to-right
continuous density HMM with only self and for-

ward transitions. A mixture of Gaussians with
diagonal covariances is employed to estimate the
density function for each state. A maximum
of 16 mixtures per state is allowed. The si-
lence/background is modeled with a single state,
32 Gaussian mixture HMM. Furthermore no tran-
sition probabilities are used. The lexical represen-
tations of the sentences are obtained by prepro-
cessing the sentence orthographic transcriptions
through a text-to-speech front end. The initial
model set of these 41 subword units was trained
using the conventional maximum likelihood train-
ing procedure [5]. We then applied �ve iterations
of integrated HSBR with MCE training to the ini-
tial boot model with null grammar and the num-
ber of competing string models as well as the size
of HSBR codebook were set to four [2]. Make a
note that the HSBR codebook is extracted form
the mean vectors of HMMs coresponding to the
12 cepstral coe�cients and each training utterence
is signal conditioned by applying HSBR, prior to
being used in MCE training and decoding.

6. RECOGNITION RESULTS

We have conducted experiments to verify the ef-
fectiveness of the proposed new feature set, us-
ing the continuous speech database, on the con-
vergence property of the MCE training procedure
and on subword recognition performance. In Fig-
ure 2 we show empirical results on the behavior of
the MCE training procedure for the city name con-
tinuous speech recognition task. The upper graph
of Figure 2 shows the string error rates as a func-
tion of the epoch (a complete pass through the
entire training data set is called an epoch) of the
MCE training algorithm for the testing data. The
solid lines are associated with MCE-trained con-
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Figure 2. Convergence characteristics of the MCE
training procedure. Top graph shows the word er-
ror rate for the \city name" recognition task and
bottom graph shows the average string loss as a
function of the training epoch.

Type of Model ML Method MCE Method
HMM-I 12.24% 7.29%
HMM-II 10.75% 6.69%

Table 1. Word error rate for large vocabulary \city
name" recognition task using the conventional ML
(left) and MCE (right) training methods.

ventional HMM (HMM-I), and the dotted lines
with HMM generated using extended feature set
(HMM-II). The lower graph of Figure 2 shows the
average string loss for the entire training data set
as a function of the training epoch. We observed
that the recognition error rate monotonically de-
creases with the training epoch, and the average
string loss monotonically decreases, both reach-
ing their respective asymptotic values after �ve
epoches of the training. The average loss decreases
faster for the HMM-II than for the HMM-I, indi-
cating the e�ectiveness of the newly introduced
feature parameter. Similar characteristics in the
recognition performance are also observed. This
indicates that the original objective set out for
minimizing the recognition error via the MCE
training is accomplished and that the MCE train-
ing may be more e�ective for the HMM-II than
the HMM-I.

The city name speech recognition results focus-
ing on the comparative performances of the ML
and MCE-trained HMM-II versus the HMM-I are



summarized in Table 1. The results shown in
Table 1 can be elaborated as follows. First, under
all conditions the MCE training is superior to the
ML training; the MCE-based recognizer achieves
an average of 35% string error rate reduction, uni-
formly across all types of speech models. Second,
for the ML-based recognizer, the HMM-II gives
about 12% string error rate reduction compared
with HMM-I (error rate went down from 12.24%
to 10.75%). Thirdly, for the MCE-based recog-
nizer, the HMM-II produces 6.69% string error
rate which further yields about 8% reduction in
string error rate compared with the HMM-I. Fi-
nally, we noticed that the HMM-II outperforms
the HMM-I by atleast 8% in error rate reduction
for all cases. The results presented in Table 1
demonstrate the e�cacy of extended feature set
models trained by MCE for city name continuous
speech recognition.

7. CONCLUSIONS

In this study, the normalized residual error based
on LP is introduced and the performance of the
recognizer has been further improved by the addi-
tion of this new feature along with its �rst and sec-
ond order derivative parameters. We also showed
how the generation of such features can be ob-
tained as a by-product of LP analysis. A new
HMM that integrates the LP cepstrum and nor-
malized LP error is implemented and evaluated
using ML and MCE training methods. The con-
vergence property of the training procedure based
on the MCE approach is investigated, which leads
us to believe that the objective of minimizing the
string error intended with the MCE criterion is
achieved more e�ectively for the HMM-II than for
the HMM-I.

The experimental results on city name recogni-
tion task yields a 8% string error rate reduction by
using the HMM-II as compared to HMM-I. This
shows that the normalized LP error do contain
useful information and is complementary to the
LP cepstral coe�cients. We believe that it is also
important not to ignore the last output of an LP
analysis, namely the normalized prediction error
factor. So far, the investigation presented in this
paper and the performed experiments con�rm the
expected signi�cance of the residue for automatic
speech recognition.
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