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ABSTRACT

A vowel training aid system for hearing impaired persons
which uses a Windows-based multimedia computer has been
developed. The system provides two main displays which give
visual feedback  for vowels spoken in isolation and short word
contexts.  Feature extraction methods and neural network
processing techniques provide a high degree of accuracy for
speaker independent vowel training. The system typically
provides correct classification of over 85% of steady state
vowels spoken by adult male, adult female and child (both
genders combined) speakers.  Similar classification accuracy
is also observed for vowels spoken in short words. Low cost
and good performance make this system potentially useful for
speech training at home.

1. INTRODUCTION

 A semi-speaker independent visual speech training aid for
persons with hearing impairments has been developed using a
standard Windows 95 or NT based multimedia computer. The
training aid provides visual feedback about the quality of
pronunciation for 10 steady state American English
monopthong vowel phonemes (DARPA phonemes /aa/, /iy/,
/uw/, /ae/, /er/, /ih/, /eh/, /ao/, /ah/, and /uh/). Neural network
classifiers are used to produce the two main displays: a 10-
category “vowel bargraph” which provides “discrete”
feedback, and an “ellipse display” which provides continuous
feedback over a 2-D field, similar to an F1-F2 display.
Continuous feedback such as this is often desirable in speech
training to help correct misarticulation [1].  Four additional
displays provide access to the results of the signal processing
steps used to produce the main displays.

 A previous system for steady-state vowels  required
specialized hardware and a custom-programmed user interface
[2].   A major difficulty with the previous system was software
upgrades, since the programming was accomplished with a
combination of PC C, signal processing card C,  signal
processing card assembly language, with a requirement that all
software components  be compatible.  The newer display
system reduces cost and maintenance difficulty by using the
standard Windows graphical user interface and audio services,
which permit easy operation without specialized hardware and
software.  Unfortunately, the less expensive multimedia
soundcards  have poorer noise performance and require
additional signal processing measures to ensure spectral
stability and display accuracy.

Work is underway on a second set of displays to  provide
feedback for vowels spoken in CVC (consonant,  vowel,
consonant) contexts.  A large database (~160 speakers) of
steady-state vowel and CVC recordings has been collected for
use in training and testing the neural networks for both the
steady-state and CVC-context vowel  displays.  Results from
neural network training experiments indicate that the larger
recording database will help the system achieve greater
speaker independence. Previous testing of a similar system for
steady state vowel training [2,3] showed that hearing-impaired
children and normal-hearing children with pronunciation
problems who used the system exhibited improved vowel
articulation, but did require training for vowels produced in
word contexts.

2. PROCESSING STEPS

Six  steps are used  to implement  the two main displays:
preemphasis, log-magnitude spectrum calculation,
morphological time smoothing, calculation of discrete cosine
transform coefficients, final smoothing, and classification.
The system acquires a continuous speech signal from the
multimedia sound card using the standard Windows
multimedia services.  A custom  waveform audio API has been
developed to provide smooth double buffering and automatic
signal threshold detection. The API sends the continuous
signal to the main signal processing routines in  90ms (typical)
segments. The display output is updated once for each new
segment acquired.

Pre-emphasis is applied to each segment using a 2nd order IIR
filter, with a peak frequency response at approximately 3 kHz.
The filtered acoustic segment is then subdivided into 30-ms
frames overlapping  by 15ms. A 512 point FFT is computed
for each frame. The log magnitude of each frequency sample is
calculated, and a 40dB noise floor is applied.  Using a time
window of 10 frames, the peak value at each frequency over
the selected frames replaces the original spectral values.  A
discrete cosine transform (DCT) is performed on the resulting
“time-smoothed” spectrum.  These 12 DCTC’s are further
time smoothed by block averaging to compute  “features” of
the speech signal for the neural network classifier.

The two main displays are derived from  neural networks
trained with “backpropagation,” but with slightly different
architectures.  The bargraph display uses a network with 12
inputs, 25 hidden layer nodes, and 10 outputs.  Each output



corresponds to one of the 10 vowel phonemes, and is displayed
directly as a bar height corresponding to one of the neural
network outputs.   A correct vowel utterance results in only
one bar with high amplitude, and all other bars with low
amplitude.  The ellipse display network  has two hidden layers
with an additional linear output layer used to map the vowels
to a continuous 2-dimensional space.  In the actual display, ten
elliptical regions are outlined in different colors and
correspond to the target vowel sounds.  In operation, a
correctly pronounced vowel guides a basketball icon into  the
ellipse region for that vowel and changes the ball’s color to
match the ellipse color. Incorrect vowel pronunciation causes
the basketball icon to wander or appear in locations outside of
the ellipses, or the ellipses of  alternate vowels.

3. NOISE ISSUES

The predecessor of the current Windows NT/95-based system
was implemented with TMS320C25 DSP board from Texas
Instruments.  The conversion from a dedicated DSP board to a
standard multimedia sound card brought low cost, but also
degradation in noise performance,  since most sound cards do
not have high signal to noise ratios in typical operation. When
we tested the system with steady-state  vowels, the spectral
display had considerable jitter in the envelope.   Based on
approximate tests, the effective signal to noise ratio of typical
speech signals and average noise levels was only 30dB.  As a
consequence, the DCTC  feature display was not nearly as
stable (for steady state vowel sounds) as for the DSP board
based system.  Presumably this additional noise degrades the
recognition performance, particularly for “close” vowels.

In our initial comparison examinations of the feature displays
for the PC only system and the older DSP system the
additional jitter in the display was so dramatic that a software
implementation bug (related to the double buffering scheme)
was suspected.   However, careful checking and experimental
testing of the new code indicated that the software was not
causing the inconsistency in the feature displays. Therefore, it
was concluded that the problem was due to front end noise,
and, as discussed in the next few paragraphs, several
algorithmic refinements were investigated to reduce the effect
of this noise.

First, a second order pre-emphasis filter centered at 3kHz was
added before the remainder of the signal processing in an
attempt to suppress low-frequency and high-frequency noises.
This filter can also be viewed as an approximate matched
filter to the average speech spectrum.    Although the
recognition performance was  not significantly enhanced by
this filter (using tests similar to those described later in this
paper), this refinement was included in the processing since in
other tests we have found this step to result in a small but
measurable improvement.

Time smoothing of the  spectrum was the second method
investigated to reduce noise and increase feature stability for
steady state vowels.  Three types of smoothing methods were
tried: peak-value smoothing, median-value smoothing and

average-value smoothing. Experiments with our pre-recorded
database of steady state vowels showed that peak-value
smoothing resulted in the best recognition performance.
Moreover, longer smoothing windows gave the largest
improvement.  For example, the overall vowel recognition rate
for test vowels increased by 3% when the smoothing window
length was increased from 0 frames to 65 frames. However, a
smoothing window of 10 frames or less seemed to be
appropriate, since smoothing with too long a window
introduces intolerable response latency in the real time
program.   With a smoothing window length of  10, there is
about a 1% increase in recognition rate as compared to the
case without smoothing.

In addition, we also tried adjusting other processing
parameters such as FFT length, Frame length and Block
length.  We found that increasing the FFT length brought
slight performance improvements, but at the expense of
increased computational complexity.   As a compromise, an
FFT length of 512 with an associated Frame length of  30
milliseconds (sampling rate of 11.025 kHz) was selected.
The  Block length  variable, which is used to determine a final
number of frames as a last averaging step to compute features
from DCTCs, was selected as 5 frames, again as a compromise
between performance, response latency and  computational
complexity.

In summary,  since the signal to noise ratio of a sound card is
less than that of a dedicated DSP board, some performance
degradation must be expected. The improvement from
optimization of the processing steps described in this section
is limited.  Better performance would be expected if a high-
quality sound card were used, but at a higher hardware cost.

4. NEURAL NETWORK TRAINING ISSUES

Neural networks require training to function properly.  If
sufficient training is performed, the neural network can
generalize to properly classify data that it was not specifically
trained to recognize. When the visual speech display  performs
satisfactorily with speakers who are not part of the training
data set, it can be said that the system is “speaker
independent.”

The overall system performance can be reasonably predicted
from the performance of the neural network classifiers--
training recognition rate and the test recognition rate.  The test
recognition rate, which is obtained from speakers not used for
neural network training, is a more accurate predictor of how
well the neural network will generalize and can be interpreted
as a measure of speaker independence. As the size of the
training data set increases, it is expected that the training
recognition rate will decrease as the variability within the
training data set increases. Conversely, the test recognition
rate should increase as the increased amount of training data
improves the networks ability to generalize.   These points are
illustrated in stylized form in Figure  1.



To achieve speaker independence for the visual speech
display, a large amount of speech data is required to train the
neural networks. Speakers were divided into three primary
groups: “male” (males over 14 years old), “female” (females
over 14 years old), and “child” (males and females under 14
years old). By partitioning all speakers into these three groups,
better within-group speaker independence would be expected
with less  training data than if all speakers were considered as
one group.  A fourth group (“general”) which encompasses all
speakers was also defined and provides a qualitative measure
of speaker independence without group partitions. For the two
displays, one neural network was trained per group, for a total
of 8 neural networks in the complete system.
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Figure 1. Expected recognition rate behavior as a function of
training set size

A database of speech recordings was collected from 56 male,
58 female, and 46 child speakers using specially-developed
recording software which provides automatic recording,
endpoint detection, rough segmentation and database
management. Speech files were stored in the TIMIT format
and were automatically organized into a systematic directory
structure. A second program performed more accurate
segmentation of CVC recordings and phoneme labeling based
on energy measures.

5. TRAINING EXPERIMENT RESULTS

Figure 2 depicts the trend of  training experiment results for
bargraph-display networks trained with steady state vowels for
three data set sizes: 12 training speakers (4 test speakers) 24
training speakers (8 test speakers) and 33 speakers (11 test
speakers). Results for the ellipse display network are similar
and are typically between 5% and 10% lower than the

bargraph rates (Table 1). The general trend of the training and
test results follows the stylized “expected” trend of figure 1.
The male speaker category shows the greatest rise in test
recognition rate  as training set size increases. The female case
shows the least change as the number of training speakers
rises. The child speaker case exhibits the lowest recognition
rates, indicating the greatest amount of variability in the
recorded speech data.

A second set of experiments was conducted to compare
recognition rates for different pairings of  CVC and steady-
state vowel data using training  databases with 72 (24 each
from Male, Female, and Child categories) speakers and test
databases of 24  (8 from each category).  Each data type was
used once as training data and once as testing data, resulting
in four total pairings.

Speaker Case: Male Female Child General
Train Rate for
Bargraph (%) 96.2 95.5 93.2 90.0

Test Rate for
Bargraph (%) 87.1 88.2 76.3 83.7

Train Rate for
Ellipse (%) 90.5 91.1 82.1 79.7

Test Rate for
Ellipse (%) 86.9 84.1 70.7 74.4

Table 1. Comparison of Training and Test Recognition Rates
Training Set: 24 Speakers from each gender, Steady Vowel
Test Set:  8 Speakers from each gender, Steady Vowel

60%

70%

80%

90%

100%

10 20 30
speakers in training set

re
co

gn
iti

on
 r

at
e

male female child

general training testing

Figure 2. Observed recognition rate behavior as a function of
training set size for steady-state vowels.



Results from these experiments are shown in Table 2. While
better test recognition rates are exhibited in the
“homogeneous” pairings of CVC/CVC and SV/SV, consistent
performance is shown in the “heterogeneous” pairings with
about a 5% to 6% decrease in recognition rate, indicating that
this system performs approximately equally as well for either
type of vowel data.

Trained with:
Tested with:

SV
SV

SV
CVC

CVC
CVC

CVC
SV

Train Rate (%) 90.0 90.0 89.4 89.4
Test Rate (%) 83.7 75.9 84.6 77.4

Table 2. Comparison of  Training and Test Recognition Rates
for different pairings of vowel data.
Training Set: 24 Speakers from each gender
Test Set:   8 Speakers from each gender
SV: Steady vowels spoken in isolation
CVC: Vowels extracted from CVC words

6. CONCLUSION

The low cost and high performance of this system indicate that
it has potential for speech training at home for the hearing
impaired. Although the use of common multimedia sound card
adds a significant amount of noise to the input signal when
compared to high quality dedicated signal processing cards,
additional signal processing and careful parameter selection
lessen the impact on the system’s performance. A large
speaker database provides sufficient training data to provide
high neural network classifier performance—typically over
85%.   Since the highest test results obtained in this study are
still substantially below the training results (typically at least
twice as many errors for the test data as for the training data),
continued collection of  training data should cause the real
time system performance to improve, and increase the
attractiveness  of this system for widespread use for speech
training.   The results for the vowels for CVCs also indicate
that a display for CVC vowels can be implemented with
accuracy comparable to that obtained for steady vowels,
provided the neural networks are trained with data obtained
from CVC tokens.
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