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This paper contains results on the design of optimum equalizers to
eliminate intersymbol interference in linear non-minimum phase ] ) o
channels conveying binary signals. The optimization is with re- Figure 1: A channel equalizer combination
spectto an open eye condition with a given delay. For causal stable

channels with non-minimum phase zeros, we argue that this prob-
lem requires only the consideration of the FIR modified channel

that has all the non-minimum phase zeros of the original channel.that 0
We show that if this modified channel can be equalized to yield Z |hi| < ha, 2
an equalized system that is open eye with a specified delay, then —o
the optimizing equalizer is, in fact FIR with all zeros outside the id

unit circle, and the impulse response of the equalised channel doe§€e any classical communication textbook or [2]. Clearly, to reduce
not extend beyond the delay. We also give a simple necessary andhe possibility of errors, the mere satisfaction of (2) is nutegh.
sufficient condition to determine if for a particular delay, a given Rather, it is desirable that

channel can be equalized to achieve an equalized response that is S |hil
open eye. —zd (3)
|hal
1. INTRODUCTION be minimized. In order to effect detection with small delay, it is

also desirable to have as smallas possible while keeping (3)
A classical objective in equalizer design for binary PAM is to small. Accordingly, this paper is concerned with minimization of
achieve an open eye condition to alleviate Intersymbol Interference(3) and the achievability of (2) for a giveh
(ISI), [1]. The more open the eye pattern, the greater the margins  T0 explain our results, we describe more precisely the setting
against additive channel noise that cause errors. One way of view-f this paper. Should’(3~*) be stable and minimum phase, then
ing this condition is though figure 1, wher€(¢~") andE(q™") E(q™') = C™'(¢") minimizes (3) withd = 0. If C(¢™") has
are the channel and the equalizer (both stable) respectivédy,  any zeros on the unit circle then (see Section 2) (2) is unachievable
the forward shift operator, and k) is an input sequence that takes ~ for anyd > 0.
values from the sef—1,1}. We say that the channel equalizer The remaining interesting case is whefy ~") has a mixture
combination: of zeros inside (stable zeros) and outside (unstable zeros) the unit
circle. Since the stable minimum phase part of the channel can be
. . . > . cancelled by embeddingits inverse in the equalizer, without loss of
H(qg™)=E(@)C(a™ ) = Zhiq @) generality the minimization of (3) reduces to the following prob-
i=0 lem: DesignE(g~") to minimize (3) whefi'(¢~ ") is a polynomial
ing~! of degree:. with all its zeros (with respect tg) outside the

is open eye with delay dr d-open eyéf for all binary u(k), one unit circle. It is this precise problem that we seek to address.

has The main result of this paper provides the following surprising
Qly(k)] = u(k - d), conclusion. Underthese conditions, for a gideshould there exist
where( is the binary decision device obeying: an equalizer for which (2) holds, then the equalizer that minimizes
(3)is FIR, in facd — n. taps in length. Further, sinceleopen eye
_ 1 ifa>0 system has preciselyzeros outside the unit circle, (see Section 2),
Qla] = -1 ifa<o. this minimizing equalizer must have all its zeros outside the unit

circle. Moreover, since a channel with. unstable zeros cannot

satisfy (2) ford < n., this result also provides a simple check as to

whether (2) can hold witld = n.. Specifically, one must simply
tCooperative Research Centre for Sensor and Signal Processingtheckif the nonminimum phase factor of the channel numerator is

(CSSIP) n.-open eye. More generally, to check if an equalizer that achieves
*Supported in part by NSF grants ECS-9211593 and ECS-9350346. (2) exists, one must solve a single linear program.

This in turn is mathematically equivalent to the requirement




Section 2 gives the preliminaries. Section 3 states the mainwhere the constraint for each complex zero also accounts for the
results and explains its implications. Section 4 proves this result constraint for its conjugate. Note: shoultig™') have multiple
by using results frorh optimisation and duality theory. These have zeros, these constraints must be augmented by derivative relation-
been used in a control system context in [4]. As an illustration of ships.
the main result Section 5 gives detailed formulas for channels with However, our goal is to optimize ovell possible N On the

two real unstable zeros. Section 6 is the conclusion. face of it, this would require solving an infinite number of linear
programs of increasing dimensions. Our main result shows this to
2. PROBLEM SETUP AND PRELIMINARIES be unnecessary.
We first provide a result that relates the zero locations of a 3. THE MAIN RESULT
system to its ability to be open eye. ‘
Theorem 2.1 A causal stable systerfl,(¢™") = Y .= hig™",is Our main result is as follows.

d-open eye only if: (i) It has no zeros on the unit circle and (ii)

. _ . .
precisely zeros (including those at infinity) outside the unit circle. Theorem 3.1 Given a channel'(¢™") satisfying assumption 2.1,

with v(d, N') as in (6), there exists a unique positive integer>

Proof: See for example [3] n. — 1 such that
" d>m= v(d,N)=v(d,d) < 1YN > d; @
In view of the discussionin the introduction, we will work with
the following standing assumption. d<m=v(d,N)>1VN >d. (8)
) Furthermore, ifd > m then the optimizing equalized channel
Assumption 2.1 The channel H(gq™') has the form
-1 —i i .
Cla )= Zcz‘q H(qg™") = Zhiq_’ +q7° ©)

1=0 1=0

has all zeros finite and outside the unit circle. Further these ze- where at most. of the{h;}

m
- ™ o are nonzero.
ros are distinct. Of these channel zerpsare real and denoted 1=0

#1, ..., %p. The channel also has — p conjugate pairs of zer0s  efore proving this result in Section 4 we discuss some of its
giving a total number of Zeros. = p + 2n—p) =2n —-p implications. A channel can be equalized to givé-apen eye
denoted, ..., zp, Zp+1, 2p11, - - - » n, 2, Where superscript system if and only ifl > m. A further consequence of (7) is that

indicates complex conjugate. for givend > m there is noreduction in (3) by using an equalizer of

order greater than the minimal order necessary to make the system
d-open-eye, namely. = d — n.. In fact we have the following
corollary:

The assumption of distinct zeros could be dropped; the results
given here will hold even without it, but with a more complicated
proof. Further, it is easy to show that the assumption of finite
valued zeros is without loss of genktya

0T Corollary 3.1 Consider a channeal’(¢~!) satisfying assumption
To formulate the minimization of (3), take y () fying b

2.1. Suppose for a giveh a causal stable equalizéi(¢~") that

ne minimizes (3) subject to (1), achieves (2). Then this minimizing
E(qY) = Z eig" 4) equalizeris FIR, of degree. = d — n.. Further, all its zeros are
P unstable.
and setN = n. + n., to obtain Proof:  Since the optimizing? (¢~ ") of (9) is FIR of degree!

and since any stablH (¢~') inherits alln. zeros ofC(¢™!), the

N L TN e 1 . .
A = OB =D kT ©) s AR ordeoren. - d . Becauseof Theore
=0 2.1 and assumption 2.1, all the zeros of this n.-tap equalizer
Define, are unstable. ]
ZJLD |hil The minimum allowable value of the delayis m + 1. In
v(d,N) = Eﬁi_nl) ﬁ~ (6) general, computation of: is problematic. It can be arbitrarily

) ) ) o ) ) large, even for a channel with a small number of nonminimum
Itis readily seen that for a giveN, d, minimizing (6) is alinear  phase zeros. At the same time to preserve this as a finite problem,
program. In particular, by a simple scaling®fq~"') if needbe, 3 hound given in [7] is useful. Explicit formulas fes are given

one can always choose = 1. Further, the only constrainton the iy section 5 for the case where the channel has only two, real,
equalized system is this set of zeros must contain all the zeros | nstable zeros.

of C(¢™"). Thenwith = [ho, -, hn]', v(d, N) is simply, the An important question to be addressed is given a déjaan
minimum of||A|; — 1, subject to the constraints that one find an equalizer that achieves (2)? The following corollary
N answers this question.
—i —d
Zhizl =-z " Vle{l,--n}, Corollary 3.2 Under assumption 2.1, there exisBq~"') for
e which (2) holds, if and only if/(d, d) < 1.



Clearly checkingwhethey(d, d) < 1, requires the solution of
afinite order linear program. Further, shogld!, d) < 1, then the
equalizer achieving this(d, d) also minimizes (3). Finally, since
with N = n., E(q™") is a constant;.-open eyeness s achievable
with a causal stable equalizer if and only if

ne—1

lenel > > leil.
=0

4. PROOF OF THE MAIN RESULT

The proof of Theorem 3.1 is obtained by considering a problem
which is the dual of thé; minimization problem of (6). The dual

Herew” is as in (12) saS; is the set obtained from the firét

constraints in (11) (including the “missing"constraint ifl > d)
ands is the set obtained from infinitely many constraints (11). Itis
noted in [6] thatS is compact. In addition we name thgperplane
pairs that form the boundaries of these sets:

Hy={aeR™ :|a'w"| =1}.

The results of this paper depend on an understanding of which
hyperplane paird{; intersectS. The following lemma shows
that only a finite number of hyperplane pairs starting withand
indexed by consecutive valuesiofntersects.

Lemma 4.1 There exists an integer such thatH, N S # 0 for

problem has a structure that is exploited to obtain the results. They < . < m andH, NS = 0 for k > m.

connection between (6) and the dual version is via the following
duality theorem, which is stated Wwitut proof. (See [5]).

Theorem4.11f A€ R"™° andb € R", then:

min ||z|; = max o'b
©€lp «€RT
Ax=b lAla|loo <1

When applied to (6), the duality theorem yields the following.

Theorem 4.2 Under assumption 2.1, for positive integersg, d
with N > d > n.,

Y(d, N) = max [—a’w] (10)
subjectto
o'W <1; k=0,1,2,...,d=1,d+1,...,N (11)
where
Wk = (zl_k,...,zp_k,@?zp_fl,Szp_fl,...,%z;k,gz;k), 12)

and$ denotes the “imaginary part".

Proof: In view of the discussion at the end of Section 2, one has
that
v(d, N) = min ||g|[s 13)
ge€lL
subjectto
d—1 N-1
Zgizj_’ + Zgizj_’_l =—z7% j=12...,n (14)
=0 i=d
whereg = [go, . ..,gn—1], is related toh according to
g = hi i=0,1,...,d—1,
g: = h,‘+1; i:d,d+1,...,N—1.

The duality theorem can then be applied directly to give the
desired result. ]

arise from the cost function
interpretation in the convex set hyperplane and a
We introduce some sets closely related to the feasible set (11):

!
Si={HaeR™:|a'w*|<1}  and  S= Jim 5.
— 00

k=0

Proof:
The proof is in three parts:
1. HoynS £0.
2. There exist& such thatdy N S = 0.
.fH,NnS=0 ,thenHk_H nsS=40.

Proof of 1. Consider the point, = [1,0,...,0]" € R™. Note
that|sow®| = 1, soso € Ho. Further, for allk > 0, since
=7 <1,

|sow®| = R < || < 1.
This shows that, € .S also.

Proof of 2. Suppose that for alt, H, N S # 0. Lety, denote an
elementinH; N S. SinceS is a compact set iR ", there is a
numberB such thal|yx|| < B. So, sincey, € Hy,

1= yiw"| < Jlyellllo®]] < Bllw" |-

Taking the limitk — co gives a contradiction sindg»”|| — 0.

Proof of 3. Suppose that

n= [p17p27"'7pP7“P+17VP+17"'7“7171/77«]/

is an elementirf{; ;.. Consider the vectar € R"° defined by

_ —1 —1 —1 A A !
a_[plzl y P272 7"'7pPZp y Tp+1, Ap+ly .-y Tny "]

! and

wherer; = ui%zfl + V,‘Szi_l, i = V,‘?)‘Ezi_l — iz
t=p+1,...,n.

By writing each complex; in polar form and using the angle
addition formulas for sine and cosine it is easy to check that for
any non-negative integer

!
a w

T

— n/wr-l-l .

(15)

Sincen € Hyy1, [Ww*T!| = 1. By (15),|¢'w"| = 1, so
o & Hy.

SinceH; NS = 0, s is notinS. This means that there exists
anintegesn suchthate’w™| > 1. By (15),|7’'w™%!| > 1, sonis
notinS. Sincepwas an arbitrary element éfx 41, Hx41 NS = 0.

[

The result shown in Part 2 of the proof of Lemma 4.1 is known
in the thel; optimal control context [4, 6]: after a certain terminal
dual constraint, all subsequent constraints decay and have magni-
tude strictly less than one. Parts 1 and 3 taken together state that
each constraint before this terminal constraint, contributes to the



dual feasible set (i.e. none is redundant). Such a result appears to
be new and is needed for the present problem. We are now ready

to prove Theorem 3.1.

Proof of Theorem 3.1 Eqn (7): From Lemma 4.1y = S, that
is to say only hyperplane paifdo, ..., H,, determineS. Denote
by F' the dual feasible set (11) for the dual problem (10,11). From
(11) the boundaries af are theN hyperplane pairs:
Ho,...,Ha—1,Hay1,...,Hy. Thus ifd > m, then for any
value of N > d, all of the hyperplane pairélo, ..., H,, are
boundaries of- so thatF' = S,, = S and again by Lemma 4.1,
Hqn S = 0. Hence a cost of 1 is not attained at any poinfaso
thaty(d, N) = v(d,d) < 1IVN > d.

Eqn (8): Ifd < m, then by Lemma 4.1, N S # (. Hence
there is a point on the feasible gétwhere the cost function takes
on the value 1, so that(d, N) > 1 for any value ofV > d.

Eqn (9): The fact that hyperplane paifs,; for all & > m
do not contribute to the surface 6fin the dual problem (10,11),
corresponds with the solution to (13,14) havipg = 0 for all
k > m. Then ifd > m, the minimization eqn (13,14) can be
replaced by

7(d, N) = min||g||1 (16)
g€l
whereg = [go, - - ., gm]’, SUbject to
Zg,‘z]_i:—z]_d; 7=1,2,...,n a7
1=0

where complex; are resolved into real and imaginary parts.

This is a standard scalarminimization problem and it is well
known e.g. [7] that the optimal solution which we will cagll,:
has at most:. nonzero coefficients. The optimizing equalized
responseé (¢~ ') is then

H(g™') = (gopt)ia™" + a7,

1=0

(18)

which is the desired result.

5. RESULTS FOR CHANNEL WITH TWO REAL
NONMINIMUM PHASE ZEROS

For the case where the channel has only two nonminimum
phase zeros, the dual feasible ¢éis two dimensional and the
dual maximisation for the calculation ef(d, N') can be carried
out graphically to obtain closed form solutions. Here we present
closed form solutions to the equalization problem for a channel with
only two nonminimum phase zeres, z», satisfyingl < z; < z2.

The following results were obtained using the approach in [8] and
we note that it can be applied for any configuration of two real
distinct zeros.

5.1. Closed Form Expressions

Firstly,
argmin 1+ z;k
m = e 19
For the case wheré > m,
—my _—d —my _—d

—m
Z 0 T2

The optimal equalised response is

—d_—m —d —d
R 21 T A

—d_—m
z P
1 2 m
_|_

—d

H(g™') =

ey +4q

m —m
— 22

- —m
21 Z1 0 T A

(21)
q~ " of degreg(d — 2).

5.2. Numerical Example
With z; = 1/0.9 andz; = 1/0.3, the channelis
Clg ) =(¢" =09)(¢7" —03)=027-12¢"" +4¢7°.

Using egn (19) gives: = 3. From Theorem 3.1, the channel can
be madel-open-eye only forl > 3. With d = 4, eqn (21) gives
the optimum equalized system:

H(q™") =0.0618 — 0.9231¢"" + ¢~ *
and the corresponding equalizer is:

_ H(g™)
Clg™)

2

E(q™") = 0.0623 +0.2769¢"" + ¢,

6. CONCLUSION

In this paper we have applied results Gnoptimisation and
duality to the problem of designing channel equalizers which elim-
inate intersymbol interference in a linear discrete-time channel
carrying binary signals. The main result is that for a given chan-
nel there is a lower boungk + 1 on the delayl which must be
allowed before the signal can be resolved; that this delay af 1
is achievable; and that the optimum equalizer in this case yields an
equalized response of length

We also show that the determination of whether (2) is achiev-
able for a given delay reduces to the solution of a simple linear
program.
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