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ABSTRACT where|| - || is the/2 norm ofh.

We study the local minima relocation of the fractionally spaced  Note thatl;, has following properties;
Constant Modulus Algorithm(FSE-CMA) cost function in the 4 NA
presence of noise. Local minima move in a particular direction  ® 0<In <|h|I"
as the noise power increases and their number may be eventually e For any||h|| > 0, I, = 0 if and only if h is a pure delay,
reduced. In such cases the performance of FSE-CMA may fail i.e..h=[0---010---0]".
to adequately reduce inter symbol interference (ISl), but achieve 4 N
an approximated MMSE by reducing its equalizer noise gain un-  ® For anyl[all > 0, In = [[A] & when|ho| = [h1| =
der certain constraints. We analyze the mechanism of reloca- v = |havl.
tion of FSE-CMA cost function local minima in terms of the From these properties‘ we conclude that for the unit Sphere
auto-correlation matrix of sub-channel convolution matrix and its s~ .= {||n|| = 1,h € H}, I, restricted to the sphere has/
eigenvectors. local minima (on each axis},(0, .., 0,£1,0, ..,0)}, and2" local
maxima on everyho| = |hi| =, ..., = |hn | rays. The expansion

1. INTRODUCTION of CMA cost function onH in the noise-free case will show how
This work concerning CMA [1] is based on the perfect equaliza- I}, is related to CMA cost function.
tion assumption of fractionally spacing with real Sub-Gaussian For a given identicaljly independent, zero-mean, real source
sources, i.e. sub-channel disparity and length condition [5], [4], s(n) = [sn ‘- Sn—n~+1]" With the second central moment,,
[3], which allows identifying the combined channel-equalizer and the fourth central moment,, we define a statistical quantity,
space with the equalizer space. We present a geometrical underthe kurtosis deviatiorof s as follows;
standing of CMA cost function established on the combined space

V)

first, and utilize this framework for a noisy channel with real sig- ns := 3mj — ma = m3(3 — Ks), (5)
Is. . .
nas wherex; = ™4 is the kurtosis ofs. Note thatn, > 0 for sub-
2
2. INTERPRETATION OF NOISE-FREE FSE-CMA COST Gaussian source (i.&.; < 3) andn, = 0 for a Gaussian source.
FUNCTION Since the equalizer output is given py = h's(n), h € H,

The CMA cost function can be regarded as a measure how muchwe have
ISI a channel-equalizer combination can cause. We decompose 9 9 4 4
CMA cost function by a radial and a spherical components from E(y") = mz|[Rl", E(y") = mal[h]" + nsIn. (6)
this view point.

Letc:=[co---ck---cn.—1]T be al’/2-spaced channel arfd
be a real vector space consisting of equalizer taps,

Fi={f=[fo--fe-Sn;1]" | fx € R} = RY, 1) dle = E{(y"-1)’}=EW") - 27E@*) ++
ma([|hl* = 1)* +7* — ma + 031, @)

The CMA cost function/¢- can be seen as a real valued function
onH = R" as;

In a perfect FS-CMA case, it has been known that the combined

channel-equalizer impulse response in the baud spasagiven wherey = ma/ms is the CMA constant. For a sub-Gaussian

by a invertible matrix (sub-channel convolution matrix) transfor- source, from (7) we can interpret minimizing the noise-free FSE-
mation of the equalizer taps CMA cost function as setting at a certain “bumpy” sphere and

h=Cf, 2 minimizing I, on that surface (See Figure 3). The spherical sym-
metry of (||2||* — 1)? term in (7) yields that/c has local minima
whereverl;, has, which results in makin a pure delay. We will
generalize this approach for the noisy channel in following sec-
tions.

whenc has no sub-channel common roots avigd = N. — 2 [3].
C'isaNy x Ny Sylvester matrix generated from the channel c. We
identify the combined channel-equalizer spaceHespace) with
the equalizer spack by the isomorphism given b§/,

H~CF. ©) 3. COST FUNCTION OF NOISY CHANNEL

Now we introduce a measure of inherent ISI due to a tap vector Assume the reaITQau53|an white hoise with varianteo (k) =
on the channel-equalizer spabe [wk -+ - wik—n+1]" IS uncorrelated with the source. Letk) =
[z - ze—n+1]T be the colored noise ab(k) through the equal-
izer f, zi, = flw(k), andz(n) = [zn - - - zn—n+1] " be the down
sampled noise of(k), i. e. .n = 2k + 1 (Figure 1).

Then the output of the CMA equalizer is;

Definition 1 For any vectorth = [ho --- haa]? € H, the inher-
ent ISI ofh, I, is a real valued function ot/ defined by;

N—1 N—1
I = 22 = 4 4
ni= Y RIRS =[]t = ki, (@)
=0

i#j Yn = hts(n) + Zn. (8)
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Figure 1. T'/2-spaced noisy channel model

Simple calculations show
E(y*) = me|h|*+ 7| f|? 9)
E(y") = B{(h's)"} +6E{(h's)*2"} + B(z")

mallh||* + 6maa®|[B]* [ £ + 307 £]I* (20)
+7731h +7]1u1f~

Sincew is Gaussianyg,, = 0. For the simplicity of calculation, we
normalize the power of the sourcer§ = 1). Theny = m4 and
using f = C~h, the CMA cost function becomes;

4Jc VIR + 602 (|h)(|C ™ hI1? + 30 (|C R
—=2y(||]* + *C A1) + 47
+775]h~

4. RADIAL MINIMA SURFACE

Due to the complexity of the cost function (11), we examine min-
ima on every radial direction first and define a manifddon-

(€]

Theorem 1 (The existence of local minima)Jc has at least one
pair of local minima at any noise power.

Proof. Since® is a compact space (homeomorphic to a sphere),
Je has a minimum o®, which is also a local minimum of- on
H. SinceJc(h) = Jo(—h), we have a pair of local minima

Lemma 2 As noise power? increases,®-surface shrinks and
deforms to a elliptic like shape (similar /|| C R Ena), if C
is not a unitary matrix.

) —1

As 0% — oo, ns(1 — I;) /(1 4+ o?||C7 h||?) — 0 and3(1 +
o?||C~*h||?) — oco. This results thap — 0 and® has shape like
Y|C h|Gna . m

Let p(h) denote the output power of the CMA equalizehat

Proof.

773(1 - Ih)
(1+a2||C~1hl?)

¢ gl (3(1 +o*[|C7 hl?) ~

p(h) = E(y*)|n (16)
From (9), forve(h)h € ® (h € S¥) we have
plp(h)h) = (1+0°|C7 R|*)p?(h)

_ V(1 +0|C h|%)? a7

3(1+02C=1h]12)? = ns(1 = In)

Theorem 2 On the® manifold, every local maximum with respect
to the output powep is a local minimum of/ and vice versa.

sisted of all such radial minima. On the surface we can determine Proof. From a direct calculation we have

where the CMA local minima locate. Unlike noise-free case [2],
the manifold® is not spherically symmetric, which consequently
causes the relocation of local minima in a certain direction.

Lemma 1 For every ray onH-space,R*h := {rh|r > 0} (for

a givenh € SV1), the CMA cost function restricted on the ray,
Jc|r+p has a unique minimum. Furthermore, these minima are
located in the range ofo, 1].

Proof. The noisy FSE-CMA cost function (11) restricted on a ray
R™h becomes;

4Jc (rh) Ba*|CT Rt + 602/ CT R 4+ v + nsIn)rt
—27(1 4 o*||C " h)*)r? + 42 (12)

This is a quadratic function ofr?.
3Jc|R+h/8’r’ = 0 holds

e A1+ o* | h?)
w31 o2 [C AR a1 )

The r satisfying

(13)

Notice that0 < rmin < 1 asa?||C~'h|? varies, because <
ns(L—1In) <ns=3—7.m
Let ¢ denote the mapping froth € S™! C H to the scalar

T'min,

p:8" - R (14)
h = T'min
Notice thaty is a positive differentiable function o™ .
Let ® be the union of all minima in the lemma 1,
® := {p(h)h|h € S"}. (15)

From differentiability ofp, ® is a differentiable manifold home-
omorphic toSM. Every point on® is a candidate for a local
minimum of cost function. We examine the possibility as follows:

2 V(1 +0*|C” h|?)
31+ 0[O TRI?)? = ns(T = 1)
=" = p(p(h)h).
Sincey > 0, Jc is minimized wherp is maximizeds

From (17) recognize that for any CMA local minimufm,;,, it
holds

4Jc(p(h)h) =

g < p(hlmin) < 1. (18)

as shown in [6].

5. MINIMA RELOCATION IN A NOISY CHANNEL

Lemma 2 reduces the problem of finding minima.Jaf on H-
space to finding maxima gf on ®. Intuitively, as noise power in-
creases, if the fluctuation of tHe- I, term in (18) can be ignored,
the local maxima op should appear where thg> " h|| is mini-
mized. This results in the relocation of local minima&f from
where the inherent ISI of the combined channel-equalizgy i6
minimized to wherd|C' ' h|| (or equivalently equalizer nortjyf||)
is minimized on theb (e. g. equalizer noise gain vs. ISI).

The functionp restricted on® can be considered as a function
SN and rearranging (17) yields

-1
Ih -1 N—1
p(h) =~ (3 +m —|—02|Clh||2)2> . he M (19

p can be seen as a function 8h-1 dimensional disk by following
identification as any function o™ ;

WO :=[h ... haa]’ = [\/ 10 B2 by -+ haa]™ (20)

for example,
(1—In)|gva = S0 hd 4+ (1= 00 h2)?

(1)



Canonically,%(-) denotes the derivative of a function 61"

with respect to this identification, for example
hi(h3 — h?)
8 0' 1

oRo =

: (22)
h-i (hg — ha-)

Recognize that this identification depends on the choide, @nd

can be considered on any arbitrary coordinate= Uh, whereU

is a Unitary matrix, which will be denoted ky’ and 5% (-).

Let consider the derivative gf on S™ to find local minima
location; Since the maxima Iocation2,ofs the same as the minima
location of(1,—1)/(1+0?(|C~"h||*)?, Settings2; (1, —1)/(1+
a?||C~h||*)? zero and multiplying by 1 4 o2||C ' h||*)? yield;

izh + N =0

Bh0 (23)
where we defined the noise term/ss
“1,2 O 0 —1; 2
N =0 0 g5 In = 2T = 155 IC7AI7. - (24)

Since we multiplied a positive quantity + o2||C~'h||*)?, any
root of (23) with positive definite Hessian matrix is a local min-
imum of J-. Recognize that (23) is a polynomial equation on a
N —1 dimensional disk. We will exploit this property in following
sections.

5.1. When there is no spherical relocation
Because|C~'h|? RC~Y'C'h, we utilize the eigen-
value decomposition of the auto-correlation matrix(f®. Let

Ao, ..., AN be the eigenvalues @f~''C~" and o, ..., vns be
the corresponding normalized eigenvectors such that

c ot = vAVY,
whereA = diag(o, ..., Ana) andV = [vo - - - una]?.
If there is no eigenvalue disparity 6 *'C ', i.e. \g = - - -

An-1, thens2;||C~'h||> = 0 and the equation (23) becomes

)
( +"2)W[h =0

This showsJ¢c has local minima wherevef;, has as the noise-

free case, which implies noise causes no change of spherical local

Lemma 3 %'SN—l can have only two local minima on

e—
S™ near the minima location ofC ' h||gn-1, when there is a
unigue minimum eigenvalue,, with large enough eigenvalue dis-
parity A\, < ;).

Proof. First, let assumé’ is a diagonal matrix. Rearrangidg in
componentwise yields

(zooln)i  (gaollC™ A1)

4(I, —1)  2|C—1'h|?

=0, i=1,..,N—1. (26)

Since we divided (26) by a negative quantify, — 1, any root of
(26) with negative Hessian will be a minimum. However, due to
the complexity of computing Hessian we analyze the roots in a
qualitative way by looking the shape of the two rational polynomi-
als in (26). The first function is basically a scaled cubic polyno-
mial. From a direct calculation we ha‘(%%lh)i/zl(lh -1) =

hi(c — 2h2)/(In — 1) < 1 for all i, wherec is a constant de-
termined byho, ..hi—1, hit+1, .., hnva (Figure 2). Meanwhile, be-
cause the second rational polynomial is related to a cross-section
of a hyper ellipse irk; direction, which is again a ellipse, it has a
form of;

(gasllC™ Al _
2[lC=1h|?

(\i — Ao
- Ao + (AZ — )\o)hl2 +a

@7

where a is a constant determined by, ..hi—1, hit1, .., Ana.
This function has different shapes depending on the choice of
(Figure 2).

Type A If \; > Ao, ath; = 0 (minimum of the ellipse) it can
be approximated as a line of which slopgand neart1 at
h; = £1.

Type B If \; < Ao, ath; = 0 (maximum of the ellipse) it can be
approximated as a line of which slopd and monotonically
decreasing nonlinear function otherwise.

Notice that type A determines a unique root of (26) with negative

derivative, while type B can determine a unique root, of which

derivative is positive, depending on an appropriate shift (Figure
2). Since the geometrical meaning of a root with negative Hessian
is a roots with negative derivative in every direction, this implies

we can have only one pair of minima candidate near minima of
||C~*h|| for large eigenvalue disparity @f.

For a general” this can be also true in most case, although the

minima relocation except the radial shrinking due to noise in this Cr0ss-sected ellipse suffers from non-linear distortion (Figure 2).
case. Therefore, CMA works for reducing the inherent ISI of the SINCeS™ isacompact s(?afle), we conclude this minima candidate
combined channel-equalizer space in the absence of the eigenvalughould be the minima of 727 [sv-1 . m

disparity of the auto-correlation matrix of the sub-channel matrix.

However, the physica| meaning of these channels in frequency do_Theorem 3 Finite noisecan reduce the number of local minima

main is not known yet as far as we know.

5.2.  When Noise Changes the Number of Local Minima.

We now focus on the noise term\/ of (23), since this term in-
forms us of the asymptotic behavior of the equatiowas— oo.
Recognize that

0 (-1
OO ||C-1h|*’

Thus the roots ofA" = 0 with positive Hessian are the lo-

cal minima of%bm. To show that the eigenvalue dis-
parity causes a reduction of the number of local minima of
(Ip—1)
IIC_E_th4 . S
minimum eigenvalue which is significantly smaller than others.

N =|C " h|° (25)

of CMA when sufficiently large eigenvalue disparity of sub-channel
convolution matrix exists.

Proof. Rearrange (23) as follow;

1 9
P%[h +N =0 (28)
Suppos&” holds the condition of Lemma 3. A8® — oo the term
2 a—ﬁolh becomes flat and induces arbitrary small disturbance in
= 0. Since every roat of ' = 0 can be considered as a inter-
section of two lines in a small neighborhoodsofLemma 3), we
can applies this disturbance to only a particular line. Then we can

find a lower bound o2 such thatg—l2 %Ih term does not change

|sn-1, We assume an extreme case that there is only one gny relative up-down position of the line, thus the sign of the Hes-

sian of the roots, although it may shift the roots. Thus for any
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tend to locate where minimizing the equalizer noise dgiff = * - oMATocal minima
o : Wiener Solution

|C~th|| on & space than minimizing ISI for large noise power,
the number of minima reduces whg@'~* k|| has only one pair of
local minima. This result agrees with the result of [6] that “good”
CMA local local minima are in the neighborhood of the Wiener
solutions, and, at the same time, suggest that “bad” CMA local
minima may disappear.

Figure 3. A 2-dim. local minima relocation
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