
DIFFUSION OF THE ATTRACTOR OF FRACTAL
CODING FOR EDGE RESTORATION °

Nikki Bruner, Rao Yarlagadda

Oklahoma State University
214 Engineering South

Stillwater, Oklahoma 74078, USA

ABSTRACT
Diffusion of the attractor or reconstructed image of the fractal
code provides us a technique to restore edge information.
Because of coding error associated with the fractal mappings,
edges are degraded at high compression ratios.  Partitioning
compensates for the degradation, but lowers the compression
ratios significantly and does not insure the retention of
significant edges.  The diffusion technique uses the image
gradient to control the rate and direction of diffusion.  This
allows for smoothing in flat (low intensity transitions) regions
and sharpening in edge (high intensity transitions) regions.  The
usage of the image gradient in this method insures the retention
of significant edges.  The diffusion technique presented in this
paper lessens the degree of degradation of edges from fractal
coding at a lower bit rate cost than partitioning at small block
sizes.

1. INTRODUCTION

Fractal coding compresses digital images by relating areas of
local self similarity at different scales in the images [6].  In an
image, numerous smaller regions look like larger regions in the
image; for example, a small cloud pretty much looks like a large
cloud.  Taking advantage of this correlation, the fractal code
pairs up similar regions creating a list of fractal mappings.  The
attractor of this code is an approximation of the original image.
The accuracy of the approximation depends on the degree of
similarity between the larger to smaller mapping.

In order to increase the degree of similarity, the first automatic
fractal coder proposed by Jacquin [3] uses quadtree splitting to
partition the image into two block sizes.  The quadtree splitting
method divides a large square or block into four equal sized
smaller squares.  In smooth areas of the image, using the larger
block size gives higher compression ratios.   In areas of edges,
the smaller block size increases the accuracy of the fractal
mapping.  This is still the most popular method for partitioning
the image; although there exist more elaborate methods [2][5].

Compression ratio in a region decreases by a factor of four when
that region needs to be partitioned to maintain a level of

accuracy.   In order to reconstruct that region, the fractal code
requires four entries instead of one. Assuming each line in the
fractal code requires 29 bits [2], covering an 8x8 pixel image
block with 8 bpp (bits per pixel) results in a compression ratio of
17.65 (8*8*8/29) or bpp rate of 0.45 (29/8/8).  Splitting this
block into four 4 x 4 pixel blocks causes the compression ratio to
be reduced to 4.4 (4*4*8/29) or a bpp rate of 1.8 (29/4/4).

Partitioning increases the probability of restoring edges in the
attractor; however, it does not insure the retention of edges.
Degradation of edges and loss of edge information occur in the
attractor due to the limitation of fractal code to completely
describe the similarities in the image with contractive affine
transformations.  In addition, the iterative nature of spatially
reducing larger regions to smaller regions in the attractor for
image reconstruction tends to “flatten” or “blur” the image even
more [5].

Modeling edge degradation as diffusion allows us to develop a
technique to sharpen and restore edges in the attractor.  In recent
years, diffusion techniques [1][8][9] have been used for image
segmentation, edge detection, and image enhancement.  Because
the image gradient is a good estimate of the edges, choosing a
diffusion coefficient as a function of the image gradient results in
smoothing of flat regions and sharpening of edge regions.  The
diffusion coefficient can be selected to incur backward diffusion
at certain location to sharpen edges and restore edges.

Our diffusion technique takes advantage of this backward
diffusion to restore edges as well as sharpen edges in attractor
image.  We selected the diffusion coefficient to be a function of
both the gradient of the original image and the gradient attractor.
The advantage gained for this selection allows us to restore lost
edge information.  Section 2 of this paper discusses the diffusion
technique and its implementation.  Section 3 gives the
experimental results of our implementation and Section 4
summarizes our approach and outlines future work.

2. DIFFUSION TECHNIQUE

2.1 Diffusion Model

Diffusion technique evolved from modeling the intensity of the
image f as an anisotropic diffusion [9] in the form of
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where ∇• and ∇ define the divergence and gradient operators.
Letting the diffusion constant k vary, we can controlled the
direction and rate of the diffusion spatially.  In order to increase
the backward diffusion for edge sharpening and restoration, we
extended equation (1) to

where f and g are scalar functions representing the intensity of
the original image and the approximated image respectively.
Using Green’s theorems [4], we expanded equation (2) to

where∇2
 defines the Laplacian operator.  Use of equation (3)

allowed edges defined by the Laplacian of the original image to
be restored using backward diffusion.

2.2 Implementation

In order to minimize the cost in terms of compression ratio and
simplify the implementation we assumed the following:

• Fractal coding degrades the edges in a manner similar to
diffusion; therefore we can restore the attractor by
iteratively applying the changes dictated by equation
(3).

• For images, the gradient image is similar to the
Laplacian image; therefore ∇f ≈ ∇2

f.  Visually
inspecting these images in Figure 1 shows this to be a
reasonable assumption.

We implemented the discrete diffusion in the following manner:

where  α is the percent change in the cross correlation between
the Laplacian of the attractor and the image.  In equation (4), we
reduced the additional information that needed to be sent with
the fractal code to just the Laplacian of the original image.

Since the Laplacian of the attractor g also approximates the
Laplacian of the image f, only the residual code r given by

where T is an error threshold set by the user to retain the edges
required by the application was encoded into the fractal code.
For  example, the  residual information for ‘Lena’ shown in
figure 2 was calculated using T = 0.18.  This nomenclature
allowed us to reduce additional information and to code the
information with a smaller number of bits.

3. EXPERIMENTAL RESULTS

Initial results using a 256x256 gray level version of ‘Lena’
validated the usage of equation (3) for image restoration.
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Figure 1.  Comparison of the Laplacian image
(top) to the gradient image (bottom).

Figure 2.  Image of the residual code.



An approximation of ‘Lena’ from a simple fixed 8x8 block
fractal coder in Figure 3 showed image degradation in terms of
blurring, some loss of edge information, and reconstruction
artifacts.  For a quantitative evaluation, two quality measures
were used: peak signal to noise ratio (PSNR) and a measure of
edge preservation (ξ).

PSNR is given by [[2]]

where b is the largest possible intensity value (i.e., 255 for a gray
scale image) and rms is the root mean square difference between
the original image and the approximated image.  The measure of
edge preservation (ξ) is given by  [8],

where ∆v’ and ∆u’ are sharpened (highpass filtered) versions of
the original and approximated images normalized by their means.
The measure of edge preservation should approach unity when
the approximation is close to the original image.

The image in Figure 3 was restored at different threshold values
resulting in the images in Figure 4.  PSNR was 26.3 dB and ξ
was 0.81 for the restored image using the full Laplacian image in
comparison to 26.4 dB and 0.55.  Because PSNR value only
gives general indication of image quality and not edge
preservation; the changes in PSNR values were not significant.
There was a significant increase in ξ from the restoration of the
edges.

The other two images had approximately the same ξ at around 72
with PSNR values around 26.2.  However, we transferred less

Laplacian information.  From our experiments, we found that
ninety percent of Laplacian information was zero or near zero for
‘Lena.  Using a 4x4 block for comparison, the average number of
bits required would be 0.9*4*4 +2*0.1*4*4 or 17.6 bits for
sending this information.  The bpp rate would be 1.1 (17.6/4/4)
which is less than the bpp rate of 1.8 for the quadtree split.
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Figure 4. Restored Images using all the
Laplacian information (top), with T = 2σ2

(middle), and with T = σ2 (bottom).

Figure 3. Attractor of the fractal code.



4. SUMMARY

To further improve our diffusion technique, we are working to
integrate a diffusion process in the fractal transform to better
describe similarities in the image.  Identifying the edge regions
that benefit most from this technique would allow us to further
reduce the bpp rates.  We are developing a direct spatial filter
mask to simplify the complexity of the implementation.

Our work showed that the diffusion technique can enhance the
quality of the reconstructed image by restoring lost edge
information.  This increased the edge correlation between the
original image and the reconstructed image significantly.  The
bpp rate for using this method was lower than using the current
quadtree partition method.  This paper indicated that current
diffusion techniques and fractal coding can be leverage to create
a more robust method of image compression.
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