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Cüneyt Taşkiran and Edward J. Delp

Video and Image Processing Laboratory (VIPER)
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907-1285

ABSTRACT

We propose an algorithm to detect scene changes in a video
sequence in the compressed domain. We define a feature vec-
tor extracted from each frame that we call the generalized
trace. We examine various ways of processing the general-
ized trace to determine the temporal location of scene changes
in a video stream.

1. INTRODUCTION

Due to the rapid advances in compression technology and
imaging hardware, the expansion of low-cost storage media,
and the explosion of the Internet, the availability of digital
video “for everyone” is now possible. The demand for di-
gital video is also increasing in areas such as video telecon-
ferencing, multimedia authoring systems, education, and vi-
deo-on-demand systems. Some have even identified the wi-
despread use of digital video and images as the second re-
volution in communication, the first being the invention of
printing.

The technology for organizing and searching images and
video based on their content is still in its infancy. This is
especially true in multimedia applications where the diffi-
culty of searching and editing data is often the largest cost
factor. The first step to extract content-based information
from a video sequence is detecting scene changes or shot
boundaries. A shot is defined as a collection of contiguous
frames grouped together that depict a single scene or camera
operation or contain a distinct event or action. Once shots
are identified, representative key frames may be extracted
and the shots may be clustered to obtain hierarchical views
of the video.

Recently, detecting shots in the compressed video
domain has gained a lot of attention. Patel and Sethi [1] have
used a�2 technique based on intensityhistograms of I frames
to detect scene changes. Shen and Sethi [2] have applied the
technique which was proposed by Zabih, et. al. [3] to the
compressed domain by combining it with their compressed
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domain edge detection algorithm. This method uses the num-
ber of entering and exiting edge pixels to find scene changes.
Zhang, et. al. [4] used the normalized inner product of vec-
tors consisting of predetermined collections of DCT coeffi-
cients from a number of preset regions in a frame. They then
use a global threshold to detect scene changes. Yeo and Liu
[5] detect scene changes by using both pixel differences and
luminance histograms based on DC-images extracted from
the compressed video stream.

Working directly in the DCT domain has a number of ad-
vantages: First, by removing the decoding/coding step and
working with a much lower data rate, computational com-
plexity is greatly reduced. Secondly, a great deal of informa-
tion, such as motion vectors and block averages, which may
be of use in detecting shots is available in the data stream.
Lastly, manipulation in the compressed domain provides the
flexibility to accommodate dynamic resources and hetero-
genous quality of service requirements, which is particulary
important for Internet and video-on-demand applications.

2. THE GENERALIZED TRACE

Given a video stream, V , composed of N frames, ffig, we
define the generalized sequence trace as follows: Let ~xi =
[x1ix2i � � � xni]T be a feature vector extracted from the pair
of frames ffi; fi+1g. For this work we have used two fea-
tures; hence n = 2. The generalized trace, d, for V is then
defined as

di = k ~xi � ~xi+1 k2 (1)

The image formed by the DC coefficients of the DCT for a
frame in a MPEG sequence is known as the dc-image. The
sequence of dc-images corresponding to the original video
stream is known as the dc-sequence. The dc-image can be
obtained directly from the MPEG stream for the intracoded I
frames, but the DC coefficients are not directly available for
the intercoded B and P frames because motion compensa-
tion is used for these frames. Motion vectors may be used to
estimate the DC coefficients. We have used the method de-
scribed in [6] to estimate the dc-images for B and P frames.

After the dc-sequence is obtained, the luminance histo-
gram of each dc-image in the sequence is then obtained. The



luminance histogram is a valuable tool in comparing two im-
ages and has been used extensively in detecting scene
changes [1], [5]. We then define our first feature to be the
the dissimilarity measure based on the histogram intersec-
tion,H, of the dc-images as

x1i = 1�H(hi; hi+1) = 1�

PK

j=1min(hi(j); hi+1(j))PK

j=1 hi+1(j)
(2)

where hi and hi+1 are the luminance histograms for frames
fi and fi+1, respectively, and K is the number of bins used.
It was shown in [7] that if the two images that are compared
have the same number of pixels, T , that is if

KX

j=1

hi(j) =
KX

j=1

hi+1(j) = T (3)

then the histogram intersection-based dissimilarity measure
is equivalent to the city-block metric. Hence, when compar-
ing dc-images, the first feature may be written as

x1i =
1

2T

KX

j=1

jhi(j) � hi+1(j)j (4)

The second feature that we have used is the absolute va-
lue of the difference of standard deviations, for the lumin-
ance component of the dc-images, i.e., x2i = j�i � �i+1j
where

�2i =
1

T � 1

X

i

X

j

(Yi(i; j) � �)2 (5)

and � is the mean value of the luminance of the dc-image.
These two features were chosen for a number of reas-

ons: First, they are easy to extract. In addition, having both
histogram-based and pixel-based techniques is desirable be-
cause they complement each other’s weaknesses.
Pixel-based techniques may give false alarms when there are
moving objects and camera movement in the frames.
Histogram-based techniques are fairly immune to these ef-
fects but they may miss scene changes if the luminance dis-
tribution of the frames do not change significantly. Another
way to compare the similarityof two frames, which has been
used often in the literature, is the �2 similarity measure[1].
We have not included it in our feature list because it gener-
ally has a high false alarm rate.

The generalized trace for two videoclips are shown in
Fig.1 and Fig.2. Here, the trace has been normalized such
that the maximum value equals 1. The wide peaks in the
generalized trace plot of the “tv2” sequence correspond to
scene changes where there is first a fade out to a black frame
and then a fade in to another scene. Narrow peaks corres-
pond to cuts. Dissolve scene changes fall somewhere in
between, as seen from two dissolves near frames 490 and
600.
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Figure 1: The generalized trace for “tv1”
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Figure 2: The generalized trace for “tv2”

3. SCENE CHANGE DETECTION

Generally, after a dissimilarity measure is derived from the
video sequence, most work use some type of global threshold-
ing technique to detect the scene changes [4],[1]. Simple as
this approach may be, a priori selection of the
threshold is a problem since scene change is a local activ-
ity. Considering this fact, others have used sliding windows
to process the data and detect shots [5]. We approach the
problem differently. Noting that the edges of the general-
ized trace correspond to scene changes in the video stream,
we pose the scene change detection problem as a one dimen-
sional edge detection problem. A number of techniques are
available to detect the edges of a 1D signal. We have chosen
to use a method based on mathematical morphology because
morphological techniques are also useful in later stages
where the detected scenes changes are to be classified.

The building blocks of morphological methods are the



two operations of erosion and dilation[8]. There are various
ways to extend the basic binary erosion and dilation opera-
tions to multilevel, i.e. grayscale functions [9]. Based on the
umbra representation of signals, we have used the following
extension methodology: Let di; i = 0; : : : ; N � 2 be the
generalized trace, as defined above, and let sj ; j = 0; : : : ;-
L � 1 be another signal, known as the structuring element
(SE), with the assumption that N � 1 > L. The gray-scale
erosion of di by the SE is then defined as

(d	 s)(i) = min
j=0;:::;L�1

d(i + j) � s(j) (6)

for i = 0; : : : ; N �L�1. Similarly, the gray-scale dilation
is defined as

(d� s)(i) = max
j=i�L+1;:::;i

d(j) + s(i � j) (7)

for i = L � 1; L; : : : ; N � 2. When the length of the SE,
L, is small, the shape of the SE is not important, hence we
have chosen a SE having a constant value of 1. Also, we
have used a relatively small SE of length L = 3 for ease of
computation.

Based on these two operations, we define the gradient by
dilation as g+ = (d� s) � d and the gradient by erosion as
g� = d � (d 	 s). The morphological laplacian, �(d), is
then given by

�(d) = g+ � g� = ((d� s)� d)� (d� (d	 s)) (8)

The morphological laplacian for the “tv2” sequence is shown
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Figure 3: The morphological laplacian for the “tv2” se-
quence

in Fig.3. It can be shown that �(d) is an approximation to
the second derivative of d [10]. The zero crossings of � in-
dicate the location of the edges of the generalized trace, and
hence where scene changes occur. In order to isolate the zero

crossings due to edges from the ones due to noise, we pro-
ceed as follows: Suppose there is a zero crossing between
the i’th and i + 1’th frames, i.e. �i � �i+1 < 0. If j�i �
�i+1j > t, where t is a threshold, then we indicate that there
is an edge at the i’th frame. One can find the best threshold
automatically by varying t and counting the edges detected.
A plot which is useful for such a procedure is shown in Fig.4.
We see that the best value of t is approximately 0.4. After the
edges are detected, we check for spurious edge points based
on the fact that edges that are less than D frames apart can-
not possibly correspond to scene changes. We have used the
value D = 10 in this work.
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Figure 4: t versus the number of edges detected for “tv2”
sequence

4. RESULTS

The results of using the proposed algorithm on the “tv1” and
“tv2” sequences are shown in Fig.5 and Fig.6, respectively.
All of the scene changes for the “tv1” sequence are detected
whereas one is missed in the “tv2” sequence. The missed
change was a dissolve type of scene change near frame 600.
This was a dissolve from an object to a close up view of the
same object so there was little change in the color content
and object position. Additional features have to be consi-
dered to make the generalized trace more sensitive to such
subtle changes.

5. CONCLUSION

We have proposed a new method of detecting scene changes
in the compressed domain. After feature vectors are extrac-
ted for DC-images, the generalized sequence trace was ob-
tained. We are investigating the use of more features and
using the generalized trace for identfying scene content. A
postscript version of this paper is available at
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Figure 5: Detected scene changes for “tv1” sequence
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Figure 6: Detected scene changes for “tv2” sequence

ftp://skynet.ecn.purdue.edu/pub/dist/delp/

icassp98-gentrace.
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