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ABSTRACT

A multiple hypothesismodulation QAM classification task is adressed
in this paper. The classifier is designed within the rigorous frame-
work of decision theory. A characteristic feature is extracted from
the signal, and is compared to the possible theoretical features in
the maximum likelihood sense. This feature is composed of a com-
bination between fourth-order and squared second-ordercyclic tem-
poral cumulants. No assumption about the power of the signal is
made. It is shown that this uncertainty about the power of the sig-
nal does not affect the decision rule. As an application, we present
simulated performance in the context of 4-QAMvs 16-QAM vs
64-QAM classification.

1. INTRODUCTION

The modulation classification process consists in determin-
ing the modulation type of an intercepted signal corrupted
by noise and interferences. This is a challenging problem
that is of course relevant in some military comunication sys-
tems and that has been investigated for several years. Once
a signal is detected, the modulation type and its parameters
have to be determined in order to select the proper demod-
ulation scheme. One of the classical ways to tackle with
the problem of modulation classification is based on max-
imum likelihood decision theory. It consists in processing
the log-likelihood function of the signal (or an approxima-
tion thereof) and then comparing to an appropriate thresh-
old. This approach has been proposed to classify QAM
modulations [3] and PSK modulations [2]. A simpler way to
derive a classifer structure relies on the pattern-recognition
concept. This second approach consists in extracting “fea-
tures” which are signatures of each specific signal format.
In many cases, the pattern-recognition techniques are de-
signed on a intuitive basis, and the attention is focused on
practical implementation rather than on theoretical back-
ground. However, it is possible to formalize this approach
by applying the rigorous framework of decision theory. By
comparison to the methods proposed in ([3],[2]), the de-

cision rule is then based on the likelihood function of the
features rather than the approximated likelihood function of
the signal. Such a classifier has been proposed in [9]. The
decision rule is based on a vector containing cyclic cumu-
lants (possibly of different orders, possibly at different cy-
cle frequencies). This method is probably well designed for
FSK signal classification, but can unfortunately not achieve
QAM signal classification (reasons for this pitfall will be
detailed in the sequel).

The purpose of this paper is to propose a classifier fol-
lowing the principle proposed in [9], but whose decision
rule is based on a new feature, so that QAM signal clas-
sification is now possible. Our discriminating feature is a
vector containing the samples of mixed-orders cyclic cumu-
lants of the signal (namely, fourth- and second-order prop-
erly mixed cyclic cumulants). The idea of mixing different
orders cumulants to classify QAM signals was first initi-
ated in [5]. Then it was successfully applied to classify two
QAM modulations in both cyclostationary [7] and station-
ary [6] contexts. This approach is quite because a novel
statistic is built; it is neither a cumulant nor a moment, but
is choosen in order to achieve the higher discrimination as
possible. Generalizing the ideas of [7] and [6], we design in
this paper a multiple hypothesis classifier in a rigorous de-
cision theory framework. Besides, it should be underlined
that unlike [9], [7], [6], we take here into account the lack
of knowledge about the power of the noise. The classifier is
then applied to the 4-QAM / 16-QAM / 64-QAM problem.

The paper is composed as follows. In section 2, we re-
call the expressions of fourth- and second order cyclic cor-
relations for digital modulations. The theory of higher-order
cyclostationarity has been developped mainly in [1] and [8].
We will adopt here a stochastic framework and notations
well suited for complex-valued random processes. In sec-
tion 3, the basic idea on which the classifier is based is ex-
plained, and the general structure of the algorithm is given.
Simulations are provided in section 4.



2. PRELIMINARIES

2.1. Signals of interest

The modelling adopted in this paper is based on the stochas-
tic theory of random processes. In our study, we are in-
terested inN-QAM modulation classification (i.e. N-states
Quadrature Amplitude Modulation). The discrete-time ana-
lytic signal representation for these modulations is:

x(t) = e2i�fct
X
k

skq(t � kTb � t0) (1)

wheret 2 Z, fsk = ak + i:bkgk2Zis a complex-valued,
zero-mean, andi.i.d. symbol sequence with values in aN -
dimensional set,Tb is the symbol duration,fc is the carrier
frequency,q(t) is the real-valued pulse function, andt0 is a
non-random time shift. In this paper, we do not stationar-
ize the signals, and consequently, time-dependency must be
taken into account when expressing the temporal cumulants
of (1). In other words,x(t) is modeled as a cyclostationary
process.

2.2. Cyclic multicorrelations

Let Cx;p+q;p (t; �) be the(p + q)th-order cumulant-based
correlation of the processx(t), defined withp non-conjugated
terms andq conjugated terms, as in [4]:

Cx;p+q;p (t; � ) =
Cum[x(t); x(t+ �1); :::; x(t+ �p�1);

x�(t� �p); :::; x�(t� �p+q�1)]
(2)

Sincex(t) is almost-cyclostationary, there are at most
countably many values of� for which the so-called(p +
q)th-order cyclic correlation, defined by:

c�x;p+q;p(� ) = lim
T!+1

1

T

T�1X
t=0

Cx;p+q;p(t; � ) exp(�i�t) :

(3)
is non-zero.

Let us precise the expressions at order four (p + q =
4). We will consider the definition in which there are as
many conjugated as non-conjugated terms (p = q = 2).
Applying (3) to the process (1), it can be readily shown that
the modulus of the cyclic tricorrelation (also called fourth-
order temporal cumulant [1],[8]) is given by:

��c�x;4;2(� )�� = j
Cs;4;2

Tb

t=+1X
t=�1

q (t) q (t + �1) q(t� �2)q(t� �3)

� exp(�i�t)j (4)

whereCs;4;2 is the stationary fourth-order cumulant of the
random sequencefskg: Cs;4;2 = Cum[sk; sk; s�k; s

�
k]. In

(4), it is necessary to consider the modulus, in order to avoid

terms depending ont0 andfc, which area priori both un-
known.

Similarly, at order two, the modulus of the cyclic corre-
lation of the process (1) is:

��c�x;2;1(� )�� = j
Cs;2;1

Tb

t=+1X
t=�1

q (t) q (t� � ) exp(�i�t)j (5)

whereCs;2;1 = Cum[sk; s�k].

3. CLASSIFIER DESIGN

3.1. Problem statement

Classifying an observed signaly(t) in one ofM classes of
possible modulation types mod1,...,modM , may be formu-
lated as anM -ary testing problem betweenH1,...,HM given
by

Hi : y(t) = a � xi(t) + n(t) i = 1; :::;M (6)

where the modulation type ofxi(t) is modi, andn(t) is
an additive white gaussian stationary noise with power un-
known. The multiplicative factora is introduced in order
to formalize the lack of knowledge about the power of the
signal (or, equivalently, the power of the noise). Thus,a is
a random parameter independant ofb(t), and whose proba-
bility density functionpA(a) is unknown.

Buildinga classifier on characteristic features rather than
on the signal itself is equivalent to re-formulate the problem
(6) as follows:

Hi : brT = u � ri + eT i = 1; :::;M (7)

whereri corresponds to a vector containing the theoretical
characteristic features ofy(t). The vectorbrT is the estima-
tion of the features overT samples of the received signal
y(t). The vectoreT is the corresponding estimation error.
The random parameteru with unkown probability function
pU(u) is linked to the parametera in a manner depending
of the features choosen. The parameteru is independant of
eT .

The optimal classifier in the maximum likelihood sense
is the one which decides “Hk true” if the conditional prob-
ability function ofbrT , p

bRT jHi
(brT j Hi) is maximum for

i = k.
The method proposed in [9] uses a vectorri consisting

of true cyclic multicorrelations, e.g.

ri =
�
c�1xi;p1+q1;p1(� ); c

�2
xi;p2+q2;p2 (� )

�
(8)

It should be noted that, since the noisev(t) is station-
ary, if one includes in (8) only non-zero cycle frequencies,
then the theoretical vectorri for y(t) is exactly the same for
xi(t). Since the estimators of cyclic multicorrelations are
consistent and asymptotic normal [8], it follows that under



Hi, eT is asymptotically zero-mean, multivariate complex
gaussian with covariance matrix�i. We emphasized in sec-
tion 2 that the cyclic multicorrelations of all the QAM signal
are the same to within a multiplicative factor. Consequently,
if the vectorsri were defined as in (8), they would be all pro-
portional, and in this case, a maximum likelihood classifier
is of no interest. So we have to find out another feature.

3.2. The new feature

The feature we will use is defined as:

ri =
eri
kerik , eri = ����c2�=Tbxi;4;2

(a�; b�; c� )
���+ �

���c2�=Tbxi;2;1
(� )
���2� :

(9)
where(a; b; c) 2 Z, � 2 R and� = 0; :::; Tb: Henceri is
a (Tb + 1)-dimensional vector, consisting in a normalized
combination of a cyclic tricorrelation and a squared cyclic
correlation, both at the first cycle frequency2�=Tb. The
tricorrelation is considered only on a domain restricted to a
line containing the origin, and parametrated bya; b; andc.
One can qualifyri as a “generalized fourth-order function”,
because the global order is four, but is it neither a cumulant
nor a moment. This new fourth-order function gives raise
to vectorsri that are not proportional wheni varies. The
reasons for these choices are detailed in [5], [6], [7].

Moreover, the parametersa; b; c; and� will be adjusted
to maximize the distance between theri’s, so that the min-
imum achievable probability of error be as low as possible.
Since the vectorsri defined in (9) have all the same norm, it
is clear that the distribution is optimum if their isobarycen-
tre

s =
1

M
(
MX
i=1

ri) (10)

is null. Consequently, the optimum parametersa; b; c; and
� should ideally minimize the norm of the isobarycentre:

(a; b; c; �)opt = argminksk : (11)

Sincekrik = 1 8i, one can easily see that this condition
is equivalent to

(a; b; c; �)opt = argmin
2

M (M � 1)

MX
i=1

MX
j=i+1

�i;j

, argmin� (12)

where�i;j = ri � rj. Note that� can be interpreted as the
mean of all the correlations that one can define in the set
fr1; :::; rMg:

3.3. Decision rule

In this section, we show that under the condition that the
vectorsri are normalized, the optimal decision rule for the

M -ary testing problem defined in (7) is the same as in the
caseu = 1. The MV classifier maximizes the conditional
probability functionpi , p

bRT jHi
(brT jHi). It can be read-

ily shown that

pi =

Z
pU (u) � pbRT j U

(brT ju;Hi)du: (13)

SinceeT is asymptotically gaussian in (7), maximizing
pi is asymtotically equivalent to maximizing

p0i =

Z
pU (u) � exp

 
�
kbrT � urik

2

�2

!
du: (14)

Note that to derive (14), we made the approximation
�i = �2I, which of course leads to a convenient but subop-
timal scheme. Now, it is obvious that iff(t) > g(t), then
8t;
R
f(t)dt >

R
g(t)dt. Hence, maximizing

p00i = exp

 
�
kbrT � urik

2

�2

!
(15)

will guarantee thatp0i is maximized. Ifkrik is independant
of i, it is straightforward to see that maximizingp00i is equiv-
alent to maximizingbrT � ri, which corresponds to the clas-
sical correlation receiver.

Finally, the classifier will decide that the modulation
type is modk whenever

brT � rk > brT � ri 8i 6= k: (16)

4. APPLICATION TO 4-PSK VS. 16-QAM VS.
64-QAM CLASSIFICATION

4.1. Computation of optimal parameters

We suppose nowM = 3, mod1 = 4-QAM, mod2 = 16-
QAM, and mod3 = 64-QAM. In this case, the correlation
coefficient defined in (12) becomes:

� =
1

3
(r1 � r2 + r1 � r3 + r2 � r3) (17)

This coefficient is easily computable using (9), (4) et (5)
with:

Cs;4;2 = �1 Cs;2;1 = 1 for 4-QAM

Cs;4;2 = �0:68 Cs;2;1 = 1 for 16-QAM (18)

Cs;4;2 = �0:619 Cs;2;1 = 1 for 64-QAM

We also suppose that the pulse function of the modula-
tions is given by:q(t) = 1 for t = 0; :::; Tb�1 andq(t) = 0
elsewhere.

The exhaustive minimization of (17) is then performed
thanks to the SIMPLEX algorithm, which lead to the fol-
lowing optimal parameters:

(a; b; c; �)opt = (0; 1; 1;�2:867) (19)



and the corresponding correlation coefficient is given
by:

�min = 0:28 (20)

Note that this correlation coefficient is a little higher
than the correlation coefficient exhibited in the case of a
binary hypothesis test (�min = �0:06, see [7]). This will
result in some inevitable degradation of the performance.

4.2. Simulations

The performance of the classifier has been simulated by Monte-
Carlo runs.

Simulations have been performed on synthetic data in white
gaussian noise for two different signal to noise ratios (SNR=5 dB
and 10 dB; for SNRs under 5 dB, the classifier exhibited poor per-
formance, even for large sample sizes). The SNR is defined as
follows:

SNR = 10 log

P
i
x
2(i)

P
i
n2(i)

(21)

The number of transmitted symbolsNs varies from 64 to 4096
symbols, withTb = 10 (i.e. T = 640 to 40960 samples). For
each couple (SNR,Ns), 500 different signals (different symbol
sequences and noise samples) are generated for each of the three
modulations. The figure 1 gives the performance (probability of
correct classification in %, orPcc) obtained for differentNs and
for a given SNR.
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Figure 1: Performance of the classifier

5. DISCUSSION

As shown by the simulations, the classifier is not reliable for
sample sizes less than 1024 symbols, for the SNRs tested

here. Due to lack of space, the confusions matrices are not
shown here, but if we look precisely at them, it is obvious
that most of the classification errors are due to confusion be-
tween 16-QAM and 64-QAM. This is because the value of
their fourth-order cumulants are very close (0.68vs.0.619).
Theoretically, it could be worth to imagine a discriminat-
ing feature involving sixth-order statistics, but it may be not
reasonable from a estimation point of view. However, to our
knowledge, the feature introduced in this paper is the only
one that can achieve QAM modulation classification in a
cyclostationary context.
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