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ABSTRACT
This paper presents a new technique to control stability of IIR
adaptive filters based on the idea of intrinsically stable
operations that makes possible to continually adapt the
coefficients with no need of stability test or poles projection.

The coefficients are adapted in a way that intrinsically assures
the poles to be in the unit circle. This makes possible to use an
higher step size (also named learning rate here) potentially
improving the fastness of adaptation with respect to methods that
employ a bound on the learning rate or methods that simply do
not control stability.

This method can be applied to various realizations: direct forms,
cascade or parallel of second order sections, lattice form. It can
be implemented to adapt a simple IIR adaptive filter or a locally
recurrent neural network such as the IIR-MLP.

1. INTRODUCTION

The capabilities of Locally Recurrent Neural Networks (LRNNs)
in performing on-line Signal Processing (SP) tasks are well
known [1,3,5,6,10,11,14,15]. In particular one of the most
popular architecture is the Multi Layer Perceptron (MLP) with
linear IIR temporal filter synapses (IIR-MLP) [3,5,10,11,14,15].
IIR-MLP is theoretically motivated as a non-linear generalization
of linear adaptive IIR filters [13] and as a generalization of the
popular Time Delay Neural Networks (TDNNs) [1,2,4]. In fact
TDNN can be viewed as MLP with FIR temporal filter synapses
(FIR-MLP) [2,3,5]. Therefore IIR-MLP are a generalization of
FIR-MLP (or TDNN) allowing the temporal filters to have a
recursive part. Efficient training algorithms can be developed for
general LRNNs and so the IIR-MLP [10,11,14,15]. They are
based on Back Propagation Through Time of the error [2] to
propagate the sensitivities through time and network layers, and
on a local recursive computation of output error (RPE type)
[9,13]. They are named Causal Recursive Back Propagation
(CRBP) [10,11,15] and Truncated Recursive Back Propagation
(TRBP) [14] and they differ in the technique implemented to
employ on-line computation. They are both on-line and local in
space and in time, i.e. of easy implementation, and their
complexity is limited and affordable. They generalize the Back-
Tsoi algorithm [3], the algorithms in [4,6], the one by Wan [2]
and standard Back Propagation. Even if CRBP and TRBP
performs in a quite stable manner if the learning rate is chosen
small enough by the user they do not control the stability of the
IIR synapses (for the IIR-MLP) or of the recursive filters (for

general LRNNs). In the following we will refer mostly to the
IIR-MLP case but the extension to other LRNNs are possible and
easy in most cases. The same limitation is found in the all
literature of learning methods for RNNs and LRNNs, e.g.
[2,3,6,9]. The problem with general RNN is that is not even easy
to derive necessary and sufficient conditions for the coefficients
of the network to assure asymptotic stability even in the time
invariant case since the feedback loop include the non-linearity.
On the other hand for LRNNs the recursion is usually separated
from the non-linearity, as for the IIR-MLP. Therefore in batch
mode the overall IIR-MLP is asymptotically stable if and only if
each of the IIR filters is asymptotically stable, i.e. all transfer
functions poles have a module less than one.

In the time-variant case (on-line adaptation) the above condition
is not sufficient anymore. A “slow coefficient-variation”
condition must be added to assure stability [8,12]. Even if this is
what the theory state, in practice the second condition is often
ignored since for practical signals the condition on the poles is
sufficient [13] and the cases in which this is not true are
“pathological” [13]. The second condition is important when the
IIR filter must operate near the instability region [12]. On the
contrary in the linear IIR adaptive filter literature there are
various techniques that can be employed to control stability
[13,8]. The simplest is to monitor the poles and do not adapt at
the time when this will bring the poles outside the circle. Since to
monitor stability efficient criteria are available such as Jury’s
one, that avoids to compute the poles, this method is simpler, but
slower and less robust than pole projection methods [13]. To
make stability check easier, the IIR filter can be realized as
cascade or parallel of second order sections [13,12] or in lattice
form [12,7].

Other stability assurance techniques include the hyperstable
adaptive recursive filter (HARF) which imposes conditions on
the transfer function not easy to guarantee in practice [8].

This paper presents a new technique to control stability of IIR
adaptive filters based on the idea of intrinsically stable
operations that makes possible to continually adapt the
coefficients with no need of stability test or poles projection.

The coefficients are adapted in a way that intrinsically assures
the poles to be in the unit circle. This makes possible to use an
higher step size (also named learning rate here) potentially
improving the fastness of adaptation with respect to methods that
employ a bound on the learning rate, e.g. [8] or methods that
simply do not control stability.



This method can be applied to various realizations: direct forms,
cascade or parallel of second order sections, lattice form. It can
be implemented to adapt a simple IIR adaptive filter and on a
locally recurrent neural network such as the IIR-MLP.

In the next two sections the Intrinsic Stability technique will be
explained and then simulation results will be presented.

2. INTRINSIC STABILITY TECHNIQUE
The basic idea underlying this technique is to restrict the region
of the values that the coefficients can take so that the filter is
stable. In the following we will assume that the working
conditions of the filter are such that the filter stability is assured
if the time invariant conditions are satisfied. Otherwise it is
always possible to add to this new method a control of the step
size that assures the “slow-varying” condition, but the
development of such a bound for the step size is beyond the aim
of the paper.

2.1 First Order Case

For the sake of clarity the explanation of the method will start
from the simplest case, the first order IIR filter.

The input-output relationship is:
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The transfer function is:
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Since the pole in the z plane is v1[t], the filter is stable if

ttv ∀<     1][1 (3)

Now the idea is to introduce a non-linear compressing
transformation from a new coefficient to be adapted to v1[t]:

])[ˆ(][ 11 tvtv Ψ= (4)

][ˆ
1 tv  is named virtual coefficient.

Choosing (.)Ψ  as a non-linear squashing function in the range
(-1,1) assure v1[t] to satisfy the stability condition.

A good choice for (.)Ψ  is the hyperbolic tangent:
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Anyway even if other choices are possible other than
(.)(.) g=Ψ , the (.)Ψ  function is requested to be squashing in

the range (-1,1), continuos and first order differentiable.

The new parameter ][ˆ
1 tv  can be adapted instead of v1[t] that will

be computed by (4). To adapt ][ˆ
1 tv  a gradient descent method

can be employed with only a little modification with respect to
the adaptation of v1[t], as explained in the following.

][ˆ
][

][][ˆ]1[ˆ
1

2

11 tv

te
ttvtv

∂
∂−=+ µ (6)

where ][][][ tytdte −= , ][tµ  is the step size and d[t] the target
signal.

In the following we will assume that the cost function is the
instantaneous squared error but an average over a running
window can also be easily implemented.

It holds
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The well known recursive expressions to compute the derivative
of the IIR filter output with respect to the denominator
coefficients (output error RPE) can still be used with the only
correction of the multiplication by the derivative of the (.)Ψ
function as stated by the last expression. For the hyperbolic
tangent it simply holds:
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That is very simple to compute since g(x) is already computed by
(4). Therefore after adapting the ][ˆ

1 tv  coefficient the

corresponding v1[t] must be computed by (4). Then only v1[t]
will be used to compute the new filter output by (1).

The effect of the squashing function is the following. When the
pole of the filter v1[t] is going near the stability region boundary,

(.)Ψ  will be computed in the flat region so that (.)'Ψ  will be
small and the adaptation slower. A part of the effect is like
decreasing the step size when going to instability but it must be
stressed that this technique cannot be viewed just as a control of
the step size. The reason is that not only the step size is
decreased but also the coefficient is bounded by (4) therefore
assuring stability even if the step size is not decreased too much.
It appear reasonable to us that any technique that just controls the
step size even by some accurate bound will have to reduce the
step size more than the technique implementing (4) and so it will
be slower. The Intrinsic Stability (IS) technique allows to avoid
any stability test or pole projection method.

2.2 Higher Order Cases

This method can be easily applied to the lattice form since in that
case the stability conditions state that the reflection coefficients
must be less than one in absolute value. Therefore for any order
of the filter the IS method can assure the stability of the lattice
form simply applying the squashing transformation to each of the
reflection coefficients and proceeding as explained.

The IS technique can be easily extended to second order
sections, allowing the use of parallel and cascade form, as in the
following.



The transfer function of a second order IIR filter is
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The necessary and sufficient conditions for stability are now
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for each t.

Therefore the squashing transformation is to be done as:

( )][ˆ][ 22 tvtv Ψ= (12)
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Where the second equation must be computed after the first one,
since the new value of v2[t] must be available.

The last two expressions allow satisfying exactly the stability
conditions with no restriction of the stable region.

The two ][ˆ
1 tv  and ][ˆ

2 tv  coefficients can be independently

adapted by gradient descent and then v1[t] and v2[t] can be
computed by the last two expressions.

To generalize the IS method to a general order IIR filter in direct
form the poles must be represented in module and phase form.
The modules can be squashed in the range (0,1) by a unipolar
sigmoid:
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or again by g(x) in the range (-1,1) to make easier to realize the
pole in the origin.

On the other hand the phases can be adapted with no restriction
since they do not influence stability.

A gradient descent in the virtual modules (i.e. before
compression) and in the real phases of the poles can be
implemented. Then the real modules must be found evaluating

(.)Ψ  and then the coefficients of the denominator of the transfer
function computed from the poles. Must be stressed that although
is necessary to implement the transformation from poles to
coefficients is not necessary to implement the inverse from
coefficients to poles that is much more complex.

The other overhead of the IS technique in the general order case
with respect to the first or second order case is that the
derivatives of the coefficients with respect to the real modules
and phases of the poles must be computed to implement the
gradient descent in the poles space as a modification of the
standard output error RPE. The formulas are not complex to
derive and compute but they cannot be shown here, for the sake
of space limitation.

3. SHAPE ADAPTATION OF THE
SQUASHING FUNCTION

In any of the realization forms of the IIR filter a number of
squashing functions must be implemented equal to the order of
the filter for a single IIR filter or for each of the synapses of the
IIR-MLP neural network.

Therefore a question should be addressed: is it reasonable to
implement exactly the same squashing function for all the IIR
filters or IIR-MLP network ? Or may be the function should be
optimized in each case ?

We believe that a much improved technique should adapt the
squashing function depending on the parameter to be squashed.
The simulations performed confirm this idea.

A good way to optimize (.)Ψ  is to make it automatically
adaptable because the number of coefficients can be so big that is
not realistic to optimize each function by hand. Moreover there is
no way to a-priori decide for the shape of (.)Ψ  without
accounting for the current adaptation process.

Therefore we propose the use of non-linear squashing functions
that can be automatically and independently adapted.

To save complexity it is very reasonable to implement (.)Ψ  as
an hyperbolic tangent with adaptive slope, i.e.:
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where s is named slope which must be adapted by gradient
descent independently from the coefficients of the filter.

In this way the slope of the compression can be optimized for
each coefficient to be squashed and the permitted range is (-1,1)
unchanged.

Since it holds:
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it is clear that increasing s make the function g(.) closer to the
threshold and therefore the IS technique can easier, i.e. faster,
place poles near the unit circle.

This can be important when the requested behavior is near the
instability that moreover is just the case when a stability control
should be employed. The simulations verify this intuition.

The gradient descent on s can be employed by the analogous of
(6), (7) and the following expression in the first order case
(extension is feasible)
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For the hyperbolic tangent it holds:
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that again is easy to compute since g(x,s) is already calculated.

The IS technique with Adaptive slope will be named AIS
method.

4. SIMULATIONS RESULTS

In this section the AIS method will be applied to the training of
an IIR-MLP neural network by the TRBP algorithm [14].

The test problems chosen are two difficult problems of on-line
non-linear dynamical system identification.

The neural networks used have 2 layers, 3 hidden sigmoidal
neurons, 1 output linear neuron.

The results are shown in terms of plots of the MSE (in dB) vs.
iterations (each iteration is an entire learning epoch) averaged
over 20 runs each with a different coefficient initialization. The
variance is also shown on the top right corner of the plots.

The first experiment is a non-linear ARMA system identification
problem proposed in [16], simulated under the same conditions.
The network used has all the synapses with 2 zeros and 2 poles.

Fig. 1 shows the improved performances of the AIS technique
over not use any stability control. In this case the adaptation of
the slope is necessary.

The second test is the identification of a 16-PAM transmission
channel in presence of a non-linearity, see [10] for details.

The network used has all the synapses with 4 zeros and 2 poles.

Fig. 2 again shows the improved performances of the AIS
technique over not use any stability control.
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Figure 1. IIR-MLP learning performances identifying the
Back-Tsoi test system by the TRBP(8,2) algorithm
implementing: standard method (no stability control) and
AIS technique. µ=0.03.

Figure 2. IIR-MLP learning performances identifying the
16-PAM test system by the TRBP(8,2) algorithm
implementing: standard method and AIS technique. µ=0.01
for TRBP(8,2) standard. For AIS: µ=0.05.
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