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ABSTRACT

This paper presents a very low bit rate speech coder based on HMM
(Hidden Markov Model). The encoder carries out phoneme recog-
nition, and transmits phoneme indexes, state durations and pitch
information to the decoder. In the decoder, phoneme HMMs are
concatenated according to the phoneme indexes, and a sequence of
mel-cepstral coefficient vectors is generated from the concatenated
HMM by using an ML-based speech parameter generation tech-
nique. Finally we obtain synthetic speech by exciting the MLSA
(Mel Log Spectrum Approximation) filter, whose coefficients are
given by mel-cepstral coefficients, according to the pitch informa-
tion. A subjective listening test shows that the performance of the
proposed coder at about 150 bit/s (for the test data including 26 %
silence region) is comparable to a VQ-based vocoder at 400 bit/s
(= 8 bit/frame � 50 frame/s) without pitch quantization for both
coders.

1. INTRODUCTION

To code speech at rates on the order of 100 bit/s, phonetic and
segment vocoders are the most popular techniques [1]-[6]. These
coders decompose speech into a sequence of speech units (i.e.,
phonetic units and acoustically derived segment units, respectively)
by using a speech recognition technique, and transmit the obtained
unit indexes and unit durations. The decoders synthesize speech
by concatenating typical instances of speech units according to the
unit indexes and unit durations.

This paper presents a phonetic vocoder based on HMM (Hid-
den Markov Model), in which speech spectra are consistently rep-
resented by mel-cepstral coefficients obtained by a mel-cepstral
analysis technique [7], and the sequence of mel-cepstral coefficient
vectors for each speech unit is modeled by phoneme HMM. The
encoder carries out phoneme recognition which adopts advanced
techniques used in the area of speech recognition, and transmits
phoneme indexes and state durations to the decoder by using en-
tropy coding and vector quantization. Pitch information is also
transmitted to the decoder whereas this paper excludes pitch quan-
tization from consideration. In the decoder, phoneme HMMs are
concatenated according to the phoneme indexes, and the state se-
quence is determined from the transmitted state durations. Then a
sequence of mel-cepstral coefficient vectors is determined in such
a way that the likelihood of the sequence of mel-cepstral coef-
ficient vectors is maximized for the concatenated HMM and the
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Figure 1: A very low bit rate speech coder based on HMM.

state sequence [8]-[10]. Finally speech signal is synthesized by the
MLSA (Mel Log Spectrum Approximation) filter according to the
obtained mel-cepstral coefficients [7].

In the following, we summarize the HMM-based speech syn-
thesis technique, and describe the proposed coder in Section 2 and
3, respectively. The results of a subjective evaluation test are shown
in Section 4.

2. HMM-BASED SPEECH SYNTHESIS

A block diagram of the proposed speech coder is illustrated in
Fig. 1. The encoder is equivalent to an HMM-based phoneme rec-
ognizer, and the decoder does the inverse operation of the encoder



using an HMM-based speech synthesis technique [10], which con-
sists of two techniques: a mel-cepstrum-based vocoding [7] and
HMM-based speech parameter generation [8], [9]. This section
summarizes these two techniques.

2.1. Vocoding Technique Based on Mel-Cepstrum

Since we model speech spectrum using M + 1 mel-cepstral coef-
ficients, i.e., frequency-transformed cepstral coefficients, the min-
imum phase synthesis filter can be written as

D(z) = exp
MX
m=0

c(m) z̃�m (1)

where z̃�1 is an all-pass transfer function defined by

z̃�1 =
z�1 � �

1 � �z�1
; j�j < 1: (2)

When the sampling frequency is 10kHz, the phase character-
istics of the all-pass transfer function with � = 0:35 gives a
good approximation to the mel frequency scale. For a given
the input speech sequence assumed to be zero-mean Gaussian
x = [x(0); x(1); : : : ; x(N � 1)]0, we obtain mel-cepstral co-
efficients c = [c(0); c(1); : : : ; c(M)]0 which maximize P (x j c).
It can be shown that P (x j c) is convex with respect to c, accord-
ingly the minimization problem can be solved efficiently by an
iterative technique described in [11], [7]. It is noted that maxi-
mizing P (x j c) with respect to c corresponds to minimizing the
energy of the inverse filter output under a constraint that the gain
factor of D(z) is unity, i.e., the impulse responses of D(z) and
1=D(z) are unity at time 0.

To synthesize speech from the mel-cepstral coefficients, we
have to realize the transfer function of (1), which is not a rational
function. Fortunately the MLSA filter can approximate D(z) with
sufficient accuracy. The MLSA filter is an IIR filter which has a
special structure shown in [7], and its stability is guaranteed for
speech sounds. The coefficients of the MLSA filter can be obtained
from the mel-cepstral coefficients withM multiply-add operations.
Thus, by using the MLSA filter, we can synthesize speech easily
from the mel-cepstral coefficients.

2.2. Speech Parameter Generation from HMM

Let ct be the vector of mel-cepstral coefficients at frame t. Then
the dynamic features ∆ct and ∆2ct, i.e., delta and delta-delta mel-
cepstral coefficients at frame t, respectively, were calculated as
follows:

∆ct =

L1X
�=�L1

w1(�)ct+� (3)

∆2
ct =

L2X
�=�L2

w2(�)ct+� : (4)

We assume that a speech parameter vector ot at frame t consists of
static and dynamic feature vectors, that is, ot = [c0t; ∆c0t;∆2c0t]

0,
where �0 denotes matrix transpose.

For a given continuous HMM � and a state sequence Q =
fq1; q2; : : : ; qT g, we obtain a sequence of mel-cepstral coefficient
vectors C = [c01; c

0

2; : : : ; c
0

T ]
0 by maximizing P (O jQ; �) with

respect to O = [o01;o
0

2; : : : ;o
0

T ]
0 under constraints (3) and (4).

The output distribution of each state is assumed to be a single
Gaussian distribution. Thus the logarithm of P (O jQ; �) can be
written as

logP (O jQ; �) = �
1
2
(O�M)0U�1(O�M)

�
1
2

log jUj+ Const. (5)

where

M =
�
�
0

q1
;�0q2

; : : : ;�0qT

�
0

(6)

U = diag
�
Uq1 ;Uq2 ; : : : ;UqT

�
; (7)

and �qt and Uqt are the mean vector and the covariance matrix
associated with state qt, respectively. Without dynamic features
(i.e., ot = ct), it is obvious that P (O jQ; �) is maximized when
C =M, that is, the sequence of mel-cepstral coefficient vectors is
determined by the mean vectors, independently of the covariances
U.

On the other hand, under the constraints (3) and (4), the se-
quence of mel-cepstral coefficient vectorsC is determined by a set
of linear equations @ logP (O jQ; �)=@C = 0, which can easily
be solved by a fast algorithm derived in [8], [9]. It has been shown
that the obtained mel-cepstral coefficient vectors reflect not only
the means of static and dynamic feature vectors but also the covari-
ances of those, resulting in a natural-sounding synthetic speech.

3. VERY LOW BIT RATE SPEECH CODER
BASED ON HMM

In this section, each part of the speech coding system is described
briefly.

3.1. Speech Recognition

We used phonetically balanced 503 sentences uttered by a male
speaker MHT in the ATR Japanese speech database for training
phoneme HMMs. Speech signals were sampled at 10kHz and win-
dowed by a 25.6ms Hamming window with a 5ms shift, and then
mel-cepstral coefficients were obtained by the mel-cepstral anal-
ysis technique. The feature vectors consisted of 13 mel-cepstral
coefficients including the 0th coefficient, and their delta and delta-
delta coefficients.

We used 3-state left-to-right triphone models with no skip.
Each state was modeled by a single Gaussian distribution with the
diagonal covariance. Total of 34 phonemes and a silent models
were prepared. Decision-tree based model clustering was applied
to each set of triphone models, and the resultant set of tied triphone
models has approximately 1,800 distributions.

The speech recognizer of the encoder uses the phoneme pair
constraints in Japanese language. The phoneme recognition rate
for the test data used in the subjective evaluation (Section 4) was
73.68 % (88.7 % when insertion errors are ignored). The average
phoneme rate computed from the transcription data is about 9.5
phoneme/s while the average phoneme rate computed from the
recognition results for the test data was 11.7 phoneme/s. It is noted
that the test data includes 26 % of silence region.



3.2. Phoneme Index Coding

The phoneme sequence obtained by the phoneme recognizer is
transmitted using entropy coding. The histograms of phonemes
and phoneme pairs were measured from the phoneme recognition
results for the training data. When the Huffman coding based on
the occurrence probability distribution of phonemes was used, the
bit rate of phoneme information for the test data was about 54 bit/s.
Further, using the occurrence probability distribution of phoneme
pairs (i.e., phoneme bigram probability) we obtained a bit rate of
about 46 bit/s.

3.3. State Duration Coding

For transmitting state durations we examined the following three
methods:

Method 1
The histogram of state durations for each phoneme was mea-
sured from the phoneme recognition results for the training data.
State durations are transmitted by the Huffman coding based on
the occurrence probability distribution of state duration for the
corresponding phoneme.

Method 2
The histogram of phoneme durations for each phoneme was
measured from the phoneme recognition results for the training
data. Each phoneme duration is transmitted using the Huffman
coding based on the occurrence probability distribution of the
corresponding phoneme. In the decoder each phoneme duration
is divided into three state durations using state duration densities
associated with the corresponding phoneme HMM. The state
durations are determined by a method based on the maximum
likelihood criterion [8], that is,

dk = mk + ��2
k (8)

� =

 
T �

3X
k=1

mk

!� 3X
k=1

�2
k (9)

where T is phoneme duration, mk, �2
k are the mean and vari-

ance of the duration density associated with k-th state of the
phoneme HMM, respectively. To obtain the state duration den-
sities, the histogram of state durations was measured from the
phoneme recognition results for the training data. Each state
duration density was modeled by a single Gaussian distribu-
tion. Regarding state duration densities of a triphone HMM as
a three-dimensional Gaussian, we applied decision-tree based
model clustering to the three-dimensional Gaussians, and the re-
sultant set of tied state duration models had approximately 1,600
distributions.

Method 3
State durations of each phoneme are regarded as a three-dimen-
sional vector, and vector-quantized. The codebook is trained
by the LBG algorithm based on state durations obtained by
phoneme recognition for the training data. Three codebooks
whose sizes are 8, 32 and 1024, respectively, were trained for the
experiment of Section 4. Further the VQ indexes are transmitted
by using the Huffman coding.

3.4. Speech Synthesis

In the decoder, triphone HMMs corresponding to the transmitted
phoneme indexes are concatenated, and from the obtained HMM
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Figure 2: Spectra comparing original (left), proposed 160
bit/s (middle), and vector-quantized 400 bit/s (= 8 bit/frame �
50 frame/s) (right).

a sequence of mel-cepstral coefficient vectors is generated using
the algorithm described in Section 2.2. By exciting the MLSA
filter by pulse train or white noise generated according to the pitch
information, speech signal is synthesized based on the generated
mel-cepstral coefficients.

4. EXPERIMENTS

In preliminary experiments we observed the following:

1. In the case where both state durations and phoneme durations
are not transmitted and the decoder determines state durations
of each phoneme based on the state duration densities asso-
ciated with each phoneme HMM, recognition errors not only
have an impact on the subjective quality of the coded speech
but degrade the intelligibility significantly.

2. When the unquantized state durations are transmitted, recog-
nition errors do not have an impact on the subjective quality
of the coded speech whereas the subjective quality is in pro-
portional to recognition rate.

To evaluate the speech quality of the proposed speech coder,
we conducted a DMOS test. Test utterances were eight senteces
which are not included in the training data. Subjects were eight
males. In this experiment, pitch was not quantized, and original
pitch values were used with Viterbi alignment based on phoneme
HMMs. Fig. 2 exemplifies spectra for original speech, those re-
constructed by the proposed coder, and those vector-quantized.
In Fig. 3, DMOS values for the proposed coder were compared
to that for the mel-cepstral vocoder with vector quantization of
mel-cepstral coefficients. The speech database used for training
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Figure 3: Subjective performance for the proposed and conven-
tional vocoders measured by DMOS.

phoneme HMMs was also used for training the VQ codebook for
the VQ-based vocoder. The bit rates for both coders are shown in
Fig. 4. The proposed coder uses 46 bit/s for transmitting phoneme
indexes, and the remaining bits are used for transmitting state or
phoneme durations.

Fig. 3 and 4 show that the proposed coder with higher bite
rate achieves better performance. This suggests that inaccurate
reproduction of state durations degrades the coded speech quality.
It can be seen from the figures that the performance of the proposed
coder at about 150 bit/s is comparable to that of the VQ-based
vocoder at 400 bit/s (= 8 bit/frame � 50 frame/s) without pitch
quantization for both coders. The proposed coder at about 70 bit/s
degrades its speech quality while it still preserves the intelligibility
of the coded speech.

The coding delay of the proposed coder can be summarized
as follows. The delay which arises in the encoder depends on the
search strategy of the phoneme recognizer. Generally it could be
on the order of 100 ms. On the other hand, the delay corresponding
to one phoneme duration; an average of about 100 ms, arises at the
decoder since the decoder needs the next phoneme index to choose
a triphone HMM. Additionally the speech parameter generation
algorithm causes a delay of approximately 100 ms at the decoder.

5. CONCLUSION

We presented a new framework of a very low bit rate speech coder
using HMM-based speech recognition and synthesis techniques.
The HMM-based speech synthesis consists of a vocoding technique
based on mel-cepstrum and an HMM-based speech parameter gen-
eration algorithm. It has been shown that the performance of the
proposed coder at about 150 bit/s (for the test data including 26 %
silence region) is comparable to that of a VQ-based vocoder at 400
bit/s (= 8 bit/frame � 50 frame/s) in terms of subjective quality
measured by DMOS without pitch quantization for both coders.
The proposed coder at 70 bit/s can still preserve the intelligibility
of the coded speech.

We expect that further improvement of the phoneme recog-
nizer results in better performance of the proposed coder. The
future work will be conducted towards constructing a speaker-
independent version of the proposed coder using an HMM-based
voice conversion technique [12] which adopts a speaker adaptation
technique used in HMM-based speech recognition.
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Figure 4: Bit rates for the proposed and conventional coders.
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