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ABSTRACT

High resolution eigenstructure-based techniques for sig-
nal source localization are known to be ineffective when the
source covariance matrix is not of full rank. We present here
two techniques to circumvent this problem in the context of
wideband active source localization. An extension is made
to show how eigenstructure methods can be applied even
when there is only one snapshot available to estimate the
wideband spectral matrices.

1. INTRODUCTION

For many years, a considerable amount of attention has fo-
cused on eigenstructure methods for source localization. In
spite of their very interesting asymptotic properties, this class
of high-resolution techniques is difficult to apply with suc-
cess when the underlying source covariance matrix happens
to be singular.
This problem of rank deficiency occurs in particular when
the sources are fully correlated (coherent sources). This
is even worse for active methods, this means when the re-
ceived signal is composed of time-delayed and amplitude-
weighted replicas of a single signal: the emitted one.
Some specific “de-correlating” techniques have been pro-
posed in the context of narrowband passive array process-
ing [3], [5], [6]. The extension of such methods to active
wideband arrays is not so easy to handle. The structure of
the matrices involved in wideband modeling are indeed very
specific and imply various combinations of the information
obtained at different frequency bins for different sensors.
Though, even if the properties are not really the same as in
the narrowband model, some efficient wideband smoothing
methods can be derived from the narrowband ones [2].
Another important limitation of eigenstructure methods is
that they require good estimates of the spectral matrices and
consequently numerous snapshots.
Our aim in this paper is to underline that the problems of
sources coherence and of source localization using a single

snapshot are very similar. They are in fact both strongly
linked with some matrices rank deficiencies. After present-
ing two wideband methods capable of increasing the rank
of the source covariance matrix, we show how to perform
wideband eigenstructure-based source localization with a
single snapshot. We also present some simulation results to
illustrate the performance of wideband active localization
with a single snapshot.

2. PROBLEM STATEMENT

Consider a uniform linear array composed ofM equispaced
sensors withP planewaves impinging on it. At frequency
�f the Fourier transform of the signal received on themth

sensor can be expressed as:

Xm;f =
PX
p=1

cpSf exp[�j�f (	p+(m�1)�p)]+Nm;f (1)

wherecp is the complex attenuation from the location of
the pth source to the array,Sf andNm;f are respectively
the Fourier transforms at frequency�f of the emitted signal
and of the noise received on themth sensor, and with :

	p = 2�Tp �p = 2�
D sin(�p)

C
(2)

Tp is the time-delay between thepth source and the first
sensor (m = 1), D is the spacing between two adjacent
sensors,C is the speed of the wavefronts, and�p is the di-
rection of arrival of thepth wavefront.
For the whole array, the information coming from theF dif-
ferent frequency bins of the band can be taken into account
by combining theM:F elementsXm;f given in (1) to form
a wideband vector as follows [1]:

X = [X1;1; X2;1; � � � ; XM;1; X1;2; � � � ; XM;F ]
T (3)

If the noise is not correlated with the signal sources, the
wideband spectral matrix can be written as:

�X = E[X:XH ] = A:�C:A
H + �N = �Y + �N (4)



�C is the source covariance matrix of dimensionP � P .
�Y is the wideband spectral matrix of the received signal
without noise.�N is the spectral matrix of the noise. With
the model introduced in (3), the spectral matrices�Y and
�N are composed ofF 2 matrix blocs (respectively�Yf;g

and�Nf;g
) whose structure are similar to narrowband spec-

tral matrices of dimensionM �M . A is aMF �P matrix
whose columns are theP wideband steering vectorsap. A
can be seen as the juxtaposition ofF matrix blocs corre-
spondingeach to the narrowband steering matrixAf ob-
tained at frequency�f . It is to be noted that each element of
the vectorap depends on both temporal and spatial param-
eters of thepth source and takes the form:

am;f;p = Sf exp[�j�f (	p + (m � 1)�p)] (5)

Thus�X carries information about the time-delay and the
direction of arrival of the sources. The active wideband
model introduced above enables high-resolution techniques
to perform spatio-temporal localization of the sources. For
example, a MUSIC-like estimator can be defined as [1]:

MSCL(�; T ) =
1

1�
PX
p=1

jaH (�; T )Vpj
2

(6)

In this expression,Vp represents the eigenvector associated
with the pth largest eigenvalue of�X anda(�; T ) repre-
sents the wideband steering vector of parameters(�; T ) (see
(5)). This 2D-functional exhibits peaks for the true direc-
tion of arrival and time-delay(�p; Tp) corresponding to the
P sources.
As in the narrowband case, any eigenstructure-based local-
ization method derived from the wideband model given in
(3) requires�C to be of full rank. Under this assumption,
the rank of�Y is equal to the number of sources and theP

largest eigenvalues of�Y are associated with the eigenvec-
tors spanning the signal subspace.
But, if the source covariance matrix is not of full rank, the
eigendecomposition fails to obtain the signal subspace. In
practice, this results in a dramatical loss of resolution of
eigenstructure-based sources localization methods. The de-
nomination “High Resolution” is no longer appropriate as,
in general, the estimation accuracy is then similar to the one
given by conventional beamformer techniques.
When the singularity of the source covariance matrix is due
to the presence of some coherent (i.e. fully correlated) sources,
an efficient “de-correlating” scheme known as “spatial-smoothing”
can be applied. This method was first proposed in a passive
narrowband context and we have recently shown how to ex-
tend it to active wideband model [2]. In the next section, the
main properties of this method are summarized, leading us
to introduce a spectral-smoothing technique.

3. WIDEBAND SMOOTHING TECHNIQUES

In the remainder of the document theP observed sources
are divided intoQ groups ofPq coherent sources each. This
means that two sources are fully correlated if they belong to
the same groupq, and that they are partially correlated if
they belong to two different groupsq1 and q2. Thus, the
presence of partially correlated sources is represented by
singletons, i.e. groups withPq = 1.

3.1. Wideband Spatial Smoothing

As in the narrowband case, the idea is to divide the ar-
ray originally composed ofM0 sensors intoK overlapping
subarrays of sizeM , thekth subarray containing the sen-
sors[k; k + 1; � � � ; k + M ]. A set ofK spectral matrices
�
k
X

= E
�
X
k:(Xk)H

�
is estimated from theK subarrays

outputs and the smoothed spectral matrix is defined by:

�
S
X =

1

K

KX
k=1

�
k
X (7)

Following the wideband vector notation introduced in (3),
it can be shown that theF 2 matrix blocs�S

Yf;g
forming the

spectral matrix�S
Y

can be written as:

�
S
Yf;g

= Af

 
1

K

KX
k=1

(Bf )
(k�1)

�C(B
H
g )

(k�1)

!
A
H
g (8)

whereBk
f is a diagonal matrix whoseP nonzero elements

are:

Bk
p;f = exp[�j�f (k � 1)�p] (9)

The main results provided by the study of the algebraic
properties induced by (8) and (9) are [2]:

� Spatial smoothing mainly results in modifications of
�C, and the decomposition given in (4) still holds
with this smoothed source covariance matrix.

� The rank of the smoothed source covariance matrix
only depends on the numberK of subarrays and on
the numberQ of coherent sources groups. In particu-
lar, if K � P

Q
the smoothed source covariance matrix

is at least of rankP .

These two points guaranty that the smoothed wideband spec-
tral matrices have the same form as the ones obtained with
partially correlated sources. Consequently spatial smooth-
ing enables eigenstructure-based methods to successfully
localize the sources.



3.2. Spectral Smoothing

In the frequency domain, under certain conditions that will
be specified below, it is possible to define a smoothing tech-
nique similar to the spatial smoothing. This mainly holds on
the very particular structure of the wideband spectral matri-
ces obtained with uniform linear arrays. An easy way to
apprehend this property is to reorder the elementsXm;f de-
fined in (1) as follows:

X = [X1;1; X1;2; � � � ; X1;F ; X2;1; � � � ; XM;F ]
T (10)

Using this new wideband vector, the spectral matrix remains
defined by the equation (4). It contains exactly the same el-
ements as the spectral matrix used in the previous sections,
but they are differently arranged. This time, the matrices
�Y and�N are composed ofM2 matrix blocs (�Ym;n

and
�Ym;n

) of dimensionF � F , each bloc corresponding to
the interaction between the sensorsm andn for all the fre-
quency bins. The wideband steering matrixA can also be
seen as the juxtaposition ofM matrix blocs of dimension
F � F , each bloc corresponding to a single sensor wide-
band steering matrixAm.
At this stage, if the difference between two frequency bins
is constant (� = �k+1 � �k) and if the signal received
on the array has been whitened, a spectral smoothing tech-
nique can be applied. It simply consists in dividing the band
originally composed ofF0 bins intoK overlapping sub-
bands ofF bins each. Thekth sub-band contains the bins
[k; k + 1; � � � ; k + F ] and provides an estimate�k

X
of the

wideband spectral matrix. The spectral smoothed matrix is
then defined as in (7) by averaging theK wideband spectral
matrices obtained on theK sub-bands. A similar expression
to (8) is obtained, as theM2 matrix blocs�F

Ym;n
forming

the spectral smoothed matrix�F
Y

have the form:

�
F
Ym;n

= Am

 
1

K

KX
k=1

(Bm)
(k�1)

�C(B
H
n )

(k�1)

!
A
H
n

(11)
whereBk

m is a diagonal matrix whoseP nonzero elements
are:

Bk
p;m = exp[�j�(k � 1)(	p + (m � 1)�p)] (12)

As the equations (11) and (12) are similar to (8) and (9), the
algebraic properties of the spectral smoothing are the same
as the wideband spatial smoothing ones. Thus, the growth
of the rank of the spectral smoothed source covariance ma-
trix only depends onK andQ.
Spectral smoothing is of a particular interest when the to-
tal number of sensorsM0 of the array is small, as in such
a case the wideband spatial smoothing is very difficult to
apply. The two kinds of wideband smoothing techniques
presented here can of course be jointly used, the rank of the
smoothed matrices depends then on the number of subarrays
and on the number of sub-bands.

4. SINGLE SNAPSHOT LOCALIZATION

Another major drawbacks of eigenstructure-base methods
is that they require a considerable number of snapshots to
have a good estimation of the spectral matrices. They yield
very low accurate results when only one single snapshot is
available. This problem is in fact very close to the problems
of sources coherence. Once again it concerns a problem of
rank deficiency.
A first quick analogy can be done to illustrate this fact. Con-
sider a unique group ofP coherent sources (Q = 1) with
no noise. The spectral matrices of the received signal�X

is then of rank one and the wideband smoothing techniques
can be applied to increase the rank of the matrices as shown
in the previous section.
If there only is one snapshot available, instead of using esti-
mates of the spectral matrices�X = E[X:XH ], it is inter-
esting to use the quantity defined by:

~�X = X:XH (13)

~�X is also of rank one and has exactly the same structure
as�X. Applying wideband smoothing techniques to~�X
enables then eigenstructure-based method to provide esti-
mates of the sources locations with success.
In the presence of noise, such an analogy is more difficult
to maintain. But we can still reasonably expect that increas-
ing the ranks of the spectral matrices by applying wideband
smoothing techniques will help to overcome the problems
linked with the rank deficiency of the matrix~�X.
To conclude, it must be said that, when applied on a sin-
gle snapshot, the wideband smoothing methods are another
way of trying to estimate the spectral matrices. The prob-
lem addressed here is to construct a significant estimate of
�X = E[X:XH ]. As there is only one snapshot, it is not
possible to approximate the mathematical expectation oper-
ator by a time-averaging process.
The notion of coherence and/or correlation of the sources
is now meaningless and other averaging methods have to
be employed to estimate the spectral matrices [4]. In this
context, the wideband smoothing schemes introduced above
can be considered as an attempt to obtain these estimates.
The classical assumption of signal ergodicity is then re-
placed by the assumptions of local stationarity in the space
and frequency domains. Even if these two kind of averages
involve necessarily finite sample data, they tend to provide
matrices whose structure is close to the theoretical form of
spectral matrices.

5. SIMULATION AND EXPERIMENTAL RESULTS

In the example presented in figure (1), there are 2 sources at
location(�1 = �5deg; T1 = 100ms) and(�2 = 10deg:; T2 =



125ms), M = 6, F = 6, SNR = 20dB. The num-
ber of subarrays is equal to the number of sub-bands and
3. We give the results: #1 obtained with the wideband ac-
tive beamformer and #2 obtained with a wideband active
MUSIC-like estimator applied on wideband smoothed spec-
tral matrices. If the conventional 2D-localization technique
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Figure 1: simulation of wideband localization with a single
snapshot

is unable to localize the two sources, the high resolution
properties of the MUSIC-like estimator are preserved and
the two sources are correctly localized.
It is to be noted that we have also started to apply spec-
tral smoothing on experimental data to localize wideband
sources using one single snapshot and the results obtained
are very encouraging. In the example given in figure (2),
there are two predominant sources and several coherent echos.
The array is composed of onlyM = 3 sensors, the num-
ber of frequency bins isF0 = 43 and there wasK = 30
sub-bands and no wideband spatial smoothing. We can see
that the wideband active beamformer (#1) encounter some
difficulties in localizing the weak sources. The MUSIC-
like estimator (#2) applied on single snapshot estimates of
the wideband smoothed spectral matrices localizes the other
sources.

6. CONCLUSION

In this paper two kinds of problems encountered by eigenstructure-
based source localization techniques were evoked. They are
namely the presence of coherent sources and the possibility
to perform wideband source localization using only a single
snapshot. The both problems are caused by some rank de-
ficiencies of the source covariance matrix. We have pointed
out the strong similarities existing between these two prob-
lems and have proposed wideband smoothing techniques to
circumvent them.
Even if the first results obtained in applying these methods
to experimental data are convincing, it remains clear that
some further work has to be done to determine with preci-
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Figure 2: wideband localization with a single snapshot per-
formed on experimental data

sion the influence of the various parameters. An interesting
study would be, for example, to analyze the real impact of
the pre-whitening stage.
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