
Real Time Low Bit-Rate Video Coding Algorithm
Using Multi-Stage Hierarchical Vector Quantization

K.Terada, M.Takeuchi, K.Kobayashi, K.Tamaru

Department of Electronics and Communication
Kyoto University, Japan

Email: terada@tamaru.kuee.kyoto-u.ac.jp

ABSTRACT
In this paper, we propose a low bit-rate coding algorithm for
wireless communication based on multi-stage hierarchical vector
quantization, motion compensation and differential pulse code
modulation. Our method adapts bit allocation to spatial and
temporal correlation. Conventional schemes based on discrete
cosine transform (DCT) need a large amount of computation on
both encoding and decoding. On the other hand, our proposed
method consists of addition, subtraction and shift operation. It
does not use multiplication. It can decode in real time on a
conventional serial processor. Encoding by vector quantization
(VQ), however, consumes a large amount of computation. We
developed a new LSI to accelerate VQ. Our scheme can send 10
frames of QCIF video sequences through a 29.2kbps line. The
quality of reconstructed image is over 30dB.

1. INTRODUCTION

Personal communication system (PCS) transceivers have widely
spread. In the near future personal digital assistants (PDA) will
become a complete voice/video phone transceiver. We are
concerned about communication issues with PDA. Standard
video codecs, such as MPEG1, MPEG2, H.261 and H.263, are
based on discrete cosine transform (DCT). They consume a large
amount of computation on both encoding and decoding. Thus
they are not suitable for communication with PDA.

Vector Quantization (VQ) has proven to be a powerful technique
for low bit rate image coding [1]. Compared with DCT-based
techniques, a video sequence compressed by VQ can be easily
decompressed and has high compression efficiency. On encoding,
however, it consumes so much computation. Thus we developed
a functional memory type parallel processor for VQ including 64
PEs (FMPP-VQ64) [2]. FMPP-VQ64 operates at 25MHz clock
frequency and performs vector quantization to over 50,000 input
vectors per second with 64 code vectors. FMPP-VQ64 is suitable
for PDA, which power consumption is 66mW at 3.5V power
supply.

Several VQ-based algorithms have been proposed for less
computation and high compression ratio. For example, Hang and
Haskell proposed interpolative VQ (IVQ) [3]. Their system sends
a low resolution bilinear interpolated image across a side channel
while vector-quantizing the residual. It can reduce blocking
effect. Gersho and Shoham suggested hierarchical VQ (HVQ)
technique [4]. They first introduced hierarchical structure into
VQ-based algorithm. This method successively partitions large
dimensional vectors into small dimensional sub-vectors. HVQ

can exploit correlation in large dimensional vectors while
avoiding the complexity obstacle of large dimensions. Ho and
Gersho proposed multistage hierarchical VQ (MSHVQ) [5]. In
multistage VQ (MVQ), after an original vector is vector-
quantized, the residual vector which has the same dimension as
the original one are quantized. MSHVQ technique uses various-
dimensional vectors at each stage instead of fixed-dimensional
vectors. They implemented multistage IVQ together to manage
vector dimensions.

All the above VQ coding schemes were originally proposed for a
still image. We will present a low bit-rate video coding algorithm
based on MSHVQ. It enables simple bit rate control by adaptive
bit allocation at each stage with small computational complexity.

In this paper, Section 2 gives a brief description of FMPP-VQ.
Section 3 describes our new MSHVQ video coding scheme.
Simulation results are presented in Section 4; and conclusions
are drawn in Section 5.

2. FUNCTIONAL MEMORY TYPE
PARALLEL PROCESSOR

FMPP-VQ64 is a Single Instruction system Multi Data stream
(SIMD) parallel processor including 64 processor elements (PE).
Each PE has 16 eight-bit words to store a 16-dimensional code
vector in a codebook and an ALU to compute a distance between
an input vector and a code one. These 64 PEs work
simultaneously. FMPP-VQ64 can vector-quantize an input
vector with 64 code vectors.

It is not desirable that the size of code vectors is limited to 64.
While a small codebook enlarges distortions, a large codebook
increases overhead bits to send. We generate a large codebook
from a small codebook to rearrange elements in a code vector.
We can generate 1024 code vectors from 64 vectors, since a
primitive code vector turns into 15 derivative code vectors
(Fig.1).

3. CODING ALGORITHM

3.1 Multi-Stage Hierarchical VQ

The performance of VQ cannot be increased without the
expansion of vector dimensions to reduce correlation of input
vectors. Low active area should be partitioned into a large
dimensional vector, and high one into a small one. However,
computation and memory requirements explode according to
vector dimensions. We adopt a hierarchical method to determine
block sizes according to activity of each area, and the technique
of decimation and interpolation to reduce computational cost.

Images are hierarchically compressed in four stages as shown in
Fig.2. At Stage 1, a value that represents a 1616× block is
scalar-quantized and transmitted. At Stage 2 16 values each of
which represents a 44× block are vector-quantized. At Stage 3
16 values each of which represents a 22× block are vector-
quantized. At Stage 4, a 44× block is vector-quantized. We
decimate 256 pixels into 16 at Stage 1, since low active area does
not require high resolution. At the following stage vector
dimensions is also reduced to 16. The vector dimensions is 16
all through the stages to share the same codebook.

Stage 1 performs decimation to obtain a value represented
a 1616× block. The easiest way is spatial subsampling, which
causes aliasing errors. One of other approaches is using the mean
value of each block, which brings a blocking effect of a 1616×
square block. Our scheme uses the mean values of 88× blocks,
located at the upper left corner of 1616× blocks. On decoding,
values in inter blocks are linear-interpolated. This method
reduces blocking effect to an 88× square block. Its
computational cost is smaller than general low-pass filter such as
Quadrature Mirror Filter (QMF) [6], Symmetric Short Kernel
Filter (SKFF) [7] and so on.

The decimation schemes at the subsequent stages are equivalent
to above one. At Stage 2 the mean values of 22× blocks at the
upper left corner of each 44× block constitutes a 44× vectors
to be vector-quantized. At Stage 3 the upper left corner pels of
each 22× block constitute a 44× vector.

3.2 Motion Compensation

There exists spatial and temporal correlation in video signals.
Spatial correlation is exploited by VQ method, while interframe
prediction technique takes advantage of temporal correlation. We
use differential pulse code modulation (DPCM) and motion
compensation (MC) as prediction method. In MC, full search
block matching algorithm (BMA) is most popular, but it has
large computational complexity. We use orthogonal search
method [8] for the purpose of compressing in real time. This
technique excels in the way of convergence, a few steps and
robustness to noise. A motion vector (MV) is determined for
each 1616× block. The MC search window is fixed to 88× pels
around the center of each block.

3.3 Adaptive Algorithm For Video Coding

The coding algorithms of the first frame is shown in Fig.3. An
image is first partitioned into 1616× blocks and then the values
represented the blocks are scalar-quantized. Differential signals
between a decimated original image and an decimated
interpolative surface are partitioned into 44× vectors at Stage 2.
In the original MSHVQ of Ho and Gersho the differential signals
between each stage are interpolated and decimated, while in our
method original image and reconstructed image are individually
decimated. This is because neighbor pels of the differential image
are less correlative than those of original image and reconstructed
image.

At Stage 2, each vector is vector-quantized and transferred. But
not all vectors are transmitted. The algorithm to choose
transmitted vectors is as follows.

(1) Calculate these two kinds of sum of absolute difference
(SAD).

∑

∑

==

==

−=

−=

16,16

1,1
2

16,16

1,1

12

1

ji
stage

ji
original

stagestageSAD

stageoriginalSAD

SADstage 2 gives the contribution of the vectors at Stage 2 to
the improvement of image quality. The excess of SADoriginal

over SADstage 2 indicates the degree of the lowering of image
quality brought by the transmission. The computation of
SADstage 2 needs the reconstructed image of Stage 2. To
obtain the image, all differential blocks should be vector-
quantized, but it requires a large computation. Thus we
neglect VQ in computing SADstage 2.

(2) All blocks are rearranged in descending order of SADstage 2.
These rearranged block are vector-quantized and transmitted
until transmitted bit exceeds the allowable amount (2920 bit).

Fig.1: rearrangement of code vectors

Fig.2: decimation and interpolation

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

3 2 1 0
7 6 5 4

11 10 9 8
15 14 13 12

0 2 1 3
4 6 5 7
8 10 9 11

12 14 13 15

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15 0 1 2 3

4 5 6 7
8 9 10 11

12 13 14 15

a primitive vector

derivative vectors the mean value
is transmitted.

linearly
interpolated

16

16
STAGE 1

16

16

STAGE 2

8

the mean value
is vector-quantized
and transmitted.

the value
is vector-quantized
and transmitted.

linearly
interpolated

8
STAGE 3

STAGE 4
4

4

(3) If 22 stagestageoriginal thresholdSADSAD +< ,

the block is not transmitted at (2). In this case, output signals at
Stage 2 lower the quality of the decoded image. The variable of
thresholdstage2 is aimed to compensate errors brought by
omitted VQ.

Then the differential signals between the decimated original
image and the decimated interpolative surface are partitioned into

44× vectors at Stage 3. Each 44× vector is vector-quantized,
and transmitted if the same condition as above is satisfied. The
residual signals are parted into 44× blocks at Stage 4. The
blocks are vector-quantized and transmitted if the condition (2) is
satisfied. The condition (3) is not applied because of no
decimation at the stage.

We explain the coding algorithm of the subsequent frames. The
scheme is equivalent to that of the first frame except for using the
motion compensated frame instead of the reconstructed frame at
Stage 1. In MC, the following rule determines motion vectors to
be transmitted.

(a) Calculate the following parameters.

)"16toup",(),(
16,16

1,1

±=−= ∑
==

yxpreviousoriginalyxSAD
ji

))0,0(),((),(min ≠= yxyxSADSADmc

(b) MC mode is chosen if:

 mcmc SADthresholdSAD >+)0,0(

The intention of thresholdmc gives priority to the zero vector.

The bit allocation strategy above is robust to the change of video
activity. Video coding based on DPCM forces a lot of signals to
be transmitted in high video activity. We can take two strategies
when transmitting through fixed bit-rate. One of them is to
reduce temporal resolution, while the other is to decrease spatial
resolution. The latter is better because video impression suffer
from the decline of temporal resolution in high video activity.
Images at low level stages, which have low spatial resolution, are
first transmitted in our method. It works conveniently in high
activity. The transmission in low video activity, however, lowers
quality of a reconstructed image. Thus we impose the above
condition (3) to prevent it. Our method can offer the way to adapt
spatial resolution to video activity.

3.4 Codebook Design

Codebook design is one of the most important factors in VQ. We
use a simple way to generate codebook in order to guarantee real-
time encoding. An initial codebook is designed using the so-
called ‘pluning’ method [1], where a small codebook is derived
from a training sequence. We take vectors of 64 greater

2stageSAD as an initial codebook out of all vectors at Stage 2.

This is because the surface at Stage 2 of the first frame seriously
affects the quality of subsequent frames. These initial primitive
code vectors are transmitted at first. We mention the method to
update the codebook. Only a single code vector is updated every
frame. We use a modified Linde-Buzo-Gray algorithm [9] as the
updating method. This technique is repeated until updated code
vectors are convergent. In our approach LBG algorithm is
applied once par frame. A primitive code vector creates fifteen
derivative code vectors, which has the same mean and variance
as the primitive one. Therefore, 16 vectors of all 1024 code
vectors are updated, which have statistical property reflecting the
property of the current input frame.

4. SIMULATION AND RESULT
Table 1 shows target variables on our simulations. The bit-rate
of 29.2kbps is determined from the capacity of personal handy
phone system (PHS) available in Japan. We have tested the
performance of our method by encoding two widely known
sequences: “Miss America” which has low spatial activity, and
“Suzie” which has high temporal activity

Table 2 lists bit allocation at each stage. Flags indicate whether
each block is encoded at each stage. At Stage 3 flags are

Fig.3: Block diagram of a encoder at the first frame

Table 1: target variables

Image Size 144176× pixels (QCIF)

Frame Rate 10Hz

Color 256 grade gray scale

Bit-rate 29.2kbps (0.115bpp)

DECIMATION
16�16�1

SQ STAGE 1
image

INTERPOLATION
1�16�16

DEC
4�4�1

STAGE 2
image

DEC
4�4�1

∑
−

+
VQ ∑

+
+

STAGE 3
image

INT
1�4�4

DEC
2�2�1

DEC
2�2�1 ∑

−
+

VQ ∑
+

+

STAGE 4
image

INT
1�2�2

∑
−

+
VQ

original
image

∑
+

+

transmitted every 1616× square block, and at Stage 4, every
88× square block. In our adaptive method mentioned above,

every frame is compressed into a fixed size. The technique
allocates MVs and the indexes of Stage 2 to a lot of bits in the
frame of high video activity, while the indexes of Stage 3 and
Stage 4 in the frame of low video activity.

 Fig.4 shows the decoded video peak signal to noise ratio
(PSNR) versus the video frame index performance for the two
sequences. The graphs are not plotted during the transmission of
the first three frames. This is because the initial codebook is
transmitted. Fig.5 presents the bit allocation for the sequence of
Suzie. Near the fifteenth frame the motion of Suzie is most active.
The results indicate that transmitted bits are properly assigned for
each stage.

In the sense of computational time, the compression of a frame
except VQ takes 30ms on Pentium 200MHz. VQ is performed by
FMPP-VQ64, which takes 48msec. Thus all coding time is
78msec. The decompression of a frame needs only 11msec on
Pentium 200MHz.

5. CONCLUSION
We develop a low bit-rate video coding algorithm using a serial
processor and FMPP-VQ64. The algorithm is based on MSHVQ,
DPCM and MC. We incorporate adaptive bit allocation
technique for video coding into MSHVQ, and adopt the
combination of low computational technique of decimation and
interpolation, orthogonal search MC and simple method of
updating codebook, i.e. restricted LBG algorithm. Our scheme
can encode QCIF images at 10 frames per second with
maintaining quality of PSNR values of over 30dB at 29.2kbps.

Our current work is focussed on developing a real time low bit-
rate image compression system for mobile videophone
communication. The scheme mentioned here will soon realize
such an attractive system.

6. REFERENCES
[1] A.Gersh and R.Gray, “Vector Quantization and Signal

Compression”, Boston: Kluwer Academic Publishers, 1992.
[2] K.Kobayashi, M.Kinoshita, M.Takeuchi, H.Onodera and

K.Tamaru, “A Memory-based Parallel Processor for Vector
Quantization: FMPP-VQ”, IEICE Trans. on Electron, vol.
E80-C, no.7, pp.970-975, 1997

[3] H.Hang and B.Haskell, “Interpolative Vector Quantization
of Color Images”, IEEE Trans. on Comm, vol. COM-36,
pp.465-470, April 1988.

[4] A.Gersho and Y.Shoham, “Hierarchical Vector
Quantization for Speech Coding”, ICASSP, pp.10.9.1-10.9.4,
April 1984.

[5] Y.Ho and A.Gersho, “Variable-Rate Multi-Stage Vector
Quantization For Image Coding”, ICASSP, pp.1156-1159,
April 1988.

[6] D.Esteban and C.Galand, “Application of quadrature mirror
filters to split band voice coding schemes”, ICASSP, 1977

[7] D.Le Gall and Tabatabai, “Subband coding of digital images
using symmetric short kernel filters and arithmetic coding
techniques”, ICASSP, 1982.

[8] A.Puri, H.M.Hang and D.L.Schilling, “An efficient block
matching algorithm for motion-compensated coding”,
ICASSP, pp.1063-1066, Dallas, April 1987.

[9] Y.Linde, A.Buzo and R.M.Gray, “An algorithm for vector
quantizer design”, IEEE Trans. On Comm, vol. COM-28,
pp.84-95, Jan. 1980.

Fig.4: PSNR versus the frame index

Fig.5: Bit Allocation for the sequence of Suzie

Table 2: bit allocation

Stage 1 index bit79299bit8 =×

flag 99bit
Stage 2

index blocksencodedofnumberthebit10 ×

flag 99 bit
Stage 3

index blocksencodedofnumberthebit10 ×

flag 1+396bit
Stage 4

index blocksencodedofnumberthebit10 ×

flag 99bit
MV

vector MVsofnumberthebit8 ×

Updating code vector bit12816bit8 =×

0 10 20 30 40 500

1000

2000

3000

Frame

B
it

s

MVs

Stage 2

Stage 3

Stage 4

Updated Code Vector

0 10 20 30 40 50

28

30

32

34

36

38

Miss America

Suzie

Frame

P
S

N
R

 [
dB

]

