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ABSTRACT

The concept of Instantaneous Frequency is still not clearly
defined. Current operational definitions give rise to physical
paradoxes, difficulting proper interpretation of the obtained
results. In this paper, we discuss why those paradoxes ap-
pear, and show how they can be avoided. We introduce
a new definition of Instantaneous Frequency, which yields
physically consistent results. This is confirmed with the
help of several examples.

1. INTRODUCTION

The concept of Instantaneous Frequency (IF:, where the
subscript emphasizes a possible time-dependency) is still
evading proper definition [2]. To start with, the concept
of frequency (based on pure sinusoids, extending from —oo
to +oo) is not easily combined with words such as instan-
taneous. This difficulty can be satisfactorily solved if we
fall back to the physical notion of frequency as the rate of
change of the phase. This notion poses additional prob-
lems: (i) determining which phase to use, and (ii) defining
the phase of a real signal. For complex signals, the phase
function is normally used. For real signals, there is a grow-
ing tendency of using the phase of the associated analytic
signal. However, these choices produce several paradoxical
results [2], [4]. In this paper, we will explain when and why
this definition of IF; produces unacceptable results. Our
point is that the derivative of the phase of a complex signal
cannot generally be used as [F; in any physically meaning-
ful way. An alternative definition of I'F} is proposed, and
shown to produce physically consistent results. The discus-
sion will be restricted to analytic signals, but the results
will be directly applicable to any complex signals.

2. INSTANTANEOUS FREQUENCY AND THE
ANALYTIC SIGNAL

In [3], Gabor introduced the concept of an analytic signal
associated with the real signal s(t), defined by z(t) = s(t) +
JjH[s(t)], where H [o] is the Hilbert Transform operator.
The analytic signal z(t) can also be obtained by

2(t) = A(t)ew(t)=2/w5(f) S Itar (1)

where S(f) is the Fourier Transform of the signal s(t), and
A(t) and ¢(t) are real functions of time. This extension to
the complex plane provides a simple way of associating, to
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Figure 1: Two chirps. Different amplitudes

the real signal under analysis, a phase function ¢(t). How-

ever, interpreting <pl (t) as the I'F; leads to physically un-
acceptable results in all but a few special cases [2]. Recent
work by Loughlin and Tacer [5] has come to shed additional
light on the inappropriateness of that definition of IF;.

e Problems associated with ¢’ (t). The main difficulty

associated with the definition IF; = ¢ (t) is that the ob-
tained IF; may range outside the band [2]. This imposes
severe difficulties when computing the IF; of general mul-
ticomponent signals. To illustrate this point, we may con-
sider a real signal consisting of two chirping cosines. The
corresponding analytic signal can be approximated by

2(t) = Alej(kltz-&-uut) +A2ej(kztz+wzt) :A(t)ejip(t).

Defining [ F; = go/ (t) results in the solid line in Figure 1, for
k1 = 5, kg = 5, A1 = *1.2, Az = 1, w1 = 10, and w2 = 60
In this figure, we also present (dashed lines) the values of
1 F; of each one of the chirps individually. We can see that
the resulting IF; is not physically acceptable, not even as
a mean of any kind. For a mean [F}, one would expect
a value somewhere in between the frequencies of the two
components. As proved in [4], only in the case A1 = Aa
will the obtained IF; be restricted to that region. These
results are also applicable to signals with components of
generic [ F; laws [4].

e Why ¢ (t)? It will now be instructive to discuss the

reasons why cp/(t) has enjoyed such widespread acceptance
as I Iy, despite the paradoxical results it provides.



(a) To start with, its average value is the mean frequency
(if we elect the Fourier spectrum as an adequate one, even
for the non-stationary case) of the signal [7]:

<w>'= / w[SW)?dw =< ¢ (t) >, 2)

[eS]

where < o >* and < o >f stand for time and frequency
averages, respectively. It thus seems natural to accept this
quantity, whose mean is the mean frequency, as the instan-
taneous value of frequency.

(b) Secondly, we have that the spread of a signal in fre-
quency is given by [2]:

o2 = /_oo A (t)%dt + /_oo (cp/(t)— <w >f)2A2(t) dt. (3)

[e5S} oo

While the first term in (3) represents the spread in fre-
quency due to A(t), the second term depends on the devia-

tion of <p' (t) from the mean frequency. This again suggests

that ¢’ (t) should be interpreted as the IF;.

(c¢) Another argument in favor of this definition of IF;
came from the theory of bilinear time-frequency distribu-
tions. These distributions represent the signal’s energy in a
bidimensional time-frequency plane, thus providing an In-
stantaneous Spectrum for each moment in time (S;(f) or,
simply, S¢). Many of these distributions have one property
in common [2]: the mean frequency of S; is, at all time in-

stants, cp/(t). This has strengthened the feeling that cp/(t)
could be interpreted as the IF}

e When is ¢ (t) acceptable? Now we will discuss why

¢ (t) sometimes agrees with our physical notion of IFy,
and, in other cases, does not. As we shall see, the an-
swer seems to lie in the symmetry of S¢. Consider an ideal
time-frequency distribution ps(t, f) of the energy of s(t).
When dealing with non-stationary signals, we intuitively
expect a generalized frequency shift property to hold: if
m(t) = s(t) - e7*® | then pm(t, f) = ps(t, f — ¢ (£)). In this
context, the analytic signal (1) is just a heterodyned ver-
sion of A(t), ¢(t) being the heterodination law. When we

compute ¢ (t), we are hoping to determine the frequency
around which the spectrum of A(t) is centered. It seems
physically sound to take this central frequency as the IF;.
A(t) is, however, a real signal and, as such, must have a

symmetric power spectrum. Computing ap/(t) is, thus, not
determining the frequency around which S; is centered, but
instead the frequency around which S is symmetric. There-
fore, we can expect a physically reasonable solution if and
only if S; is, in fact, symmetric around a central frequency.
In all other cases, the problem is ill-posed, and the results
provided by ap/ (t) are meaningless.

Figure 1 is a typical example. The ideal time-frequency
distribution of the two linear chirps will be constituted by
two different amplitude parallel ridges, shifting in frequency
at a constant rate. There are thus no frequencies around
which the several S; are symmetric. The paradoxical results
given by cp/ (t) are to be expected. If both chirps had the
same amplitude, then, for all ¢, S; would be symmetric
around the central frequency, and we could expect ap' (t) to
give acceptable results. This equal amplitude case can be
seen as the dash-dot line of Figure 1.

The problem of lack of symmetry of S; is mainly felt
when dealing with multicomponent signals, since in most
cases of signals with a single narrowband component S is
symmetric around the peak. This is why <p' (t) usually gives
proper results when analyzing single component signals.

In the following sections we will see how to extend the
concept of IF; to the general multicomponent case.

3. SPLITTING THE PHASE FUNCTION

As was stated earlier, for many bilinear time-frequency dis-
tributions, the derivative of the phase of a complex signal
is also the center of mass of S;. Considering the wild be-
havior of this derivative, we should ask why does the center
of mass in these distributions range outside the frequency
band where the energy of S; is located. The answer lies in
the negative values that the distributions with that prop-
erty always contain [1]. In an attempt to circumvent these
difficulties, Loughlin and Tacer recently proposed a differ-
ent approach to obtain (and, in fact, a different definition
of) IF;. In their proposal, IF; is obtained as the center
of mass of one of the positive time-frequency distributions
of the Cohen-Posh class [5]. Since these distributions are
always non-negative and have strong finite spectral support
(S(f) =0=p(t, f) = 0), their center of mass will always
be contained in the frequency band of the signal, and does
The concept of IF;

in this proposal is thus separated from <p' (t), a necessary
condition to obtain an IF; meaningful in the general multi-
component case. When we perform coherent demodulation
of the signal with the obtained ”correct” IF;, we end up,
in general, with a complex signal [5]. This is in accordance
with our previous discussion, reinforcing the fact that, in
the model for I F; extraction

not necessarily coincide with ¢’ (t).

i [* IFa
s(t) = C(t) e Jo ra,

C(t) should be allowed to be complex. For any signal under
analysis (namely the analytic signal), only part of the phase
function should be differentiated to obtain IF;. This part
of the phase function will correspond to the heterodination
law. The rest of the phase function is needed to account
for the lack of symmetry of S;. We will refer to these two
phase terms by ¢rr(t) and ¢a(t), respectively, ending up
with the following model:

s(t) = O(t) elerr®) At) edeal®) ejsaur(t)7

with IF, = ap;F (t). If S¢ is symmetric around some central
frequency, then all the phase of the signal can be attributed
to the heterodination law (and, thus, differentiated to ob-
tain /F}), since there is no lack of symmetry to account for.
These are the cases where ga' (t) gives proper results.

Due to the separation of the phase of the signal in two
terms, equations (2) and (3) must be generalized to the
equally meaningful identities:

<w>T=<ou(t) >+ < prp(t) >'. 4)

o2 = /w A (t)2dt + /w oA (t)2A%(t) dt

[}



+/_w (so'm (- <w >f)2 A%(t) dt. (5)

[e5S}

Both equations (4) and (5) have now an extra term, de-
pending on the phase of the baseband signal C(t). As

expected, the mean of cp/A(t) concurs to the global mean

frequency, and the second moment of <pi4 (t) concurs to the
overall bandwidth.

4. MAXIMIZING THE SYMMETRY

e Redefining [ F;. The separation of ¢(t) into two terms

(<pi4 (t) and ap} r(t)) is totally arbitrary. The only real guide-
line to follow lies in the physical validation of the IF; that
will emerge. From the previous sections, we know that cp/ (t)
produces physically acceptable results if and when S; is
symmetric around the [ F;. This suggests that the center of
symmetry of S; may be an acceptable definition of I F;. For
each frequency v, let us then consider the even (S7) and the
odd (Sf) components of S;:

Stulf) = 3 [S:0) + 8i(2v — )]

520(1) = 3 18:(5) = 8u(20 = P

We can now define IF; as being the value of v that max-
imizes the energy of the even (symmetric) component or,
equivalently, that minimizes the energy of the odd (anti-
symmetric) component. That is, the value of v that mini-
mizes (S; is real valued)

/_ (S = S — )P dr. ®)

[e5S}

This definition produces an IF: with a behavior substan-
tially different than the one obtained in [5]. They will pro-
duce the same results for symmetric S, since in these cases
the center of symmetry will also be the center of mass. This
type of definition, based on symmetry considerations, allows
us the use of the (eventually negative) bilinear distributions,
thus avoiding the time-consuming task of obtaining a posi-
tive distribution.

Let us then restrict our scope to the bilinear distribu-
tions of Cohen’s class [2], and define the Instantaneous Au-
tocorrelation (R:), as being, at each time instant, the func-
tion whose Fourier Transform is S;. For the distributions
in this class, R¢(7) is then given by

Ri(7) = / s(ty + %) s*(t — %)7(15 —ty,7) dts,

with
Yt —t1,7) = / ®(0,7) o i2m0(t—t1) do,

[eS]

where ®(6, 7) is the so called kernel function. Each choice of
®(A, ) will originate a different distribution [2] and, thus,
a different version of R;(7). The Wigner-Ville Distribution
(WD), [7] has an Instantaneous Autocorrelation given by

RIP(r) = s(t+3) 8" (t — 3),

while the Instantaneous Power Spectrum (IPS) provides a
slightly (in appearance) different version [6]:

RIPS(7) = 20s(0)5"(0 — 1) +5" (0 st + D).

The absolute unconstrained minimum of (6) can be shown
to be obtained for I F; = Q(7)/2n7, where Q(7) is the phase
of R¢(7). The value of IF; can not, however, be a function
of the auxiliary variable 7. To satisfy this constraint, we
can expand the unconstrained solution in a Taylor series
around zero, and retain only its linear term, resulting in:
Q'(0)
IF, = o (7)

This definition of IF; is, for both IPS and WD, exactly
equivalent to the traditional definition IF, = ¢’ (t). In fact,
it can be shown that the same can be said for all distri-
butions belonging to Cohen’s class with kernel functions of

the form N
o(0,7) = ZAiejef'i(T),
i=1

for all real functions f; satisfying f;(0) = 0. If, further-
more, f; (0) =0, then

80, 1)

or =0, (8)

7=0

which is the condition for ¢ (t) to be the mean frequency [2].

For these distributions, gol (t) is, simultaneously, the center
of mass of the distribution, and a first order approximation
to its center of symmetry. The approximation (7) will be
exact if Ry(7) has linear phase. For both IPS and WD,
Ry(7) will have linear phase and even modulus if the signal
has linear phase. For the WD, this will also be true even for
signals with quadratic phase. Since both these distributions
have kernel functions that satisfy (8), we can see that 3 (t)
will, for these signals, provide physically acceptable results.
e Conditions for consistency. The results obtained by
defining the Instantaneous Frequency as the frequency that
maximizes the symmetry of S; will depend on the choice
of a particular distribution, but are easily made to com-
ply with the (applicable) conditions that have been deemed
necessary for physical consistency [5]:

1. If S(f) is bandlimited to some range of frequencies, IF}
should also be limited to that range;

2. If the signal has constant amplitude and constant fre-
quency wy, its IF; should be wo;

3. If the signal is scaled in amplitude, its I F; should remain
the same.

Satisfaction of the first condition requires the used time-
frequency distribution to have weak finite spectral support.
The condition on the distribution’s kernel function for this
property to hold is [2]:

/ ®0,7) e ™ dr =0 for 0] <2|wl.

[}

Both WD and IPS have this property. The Choi-Williams
distribution (CWD), which we will also be using, does not,



but can easily be made to approximate it [2]. For the second
condition to hold, the used distribution must respect the
frequency marginal, that is:

/ ot f) dt = |S(w).

The condition on the distribution’s kernel is ®(0,7) =1, a
condition satisfied namely by the WD, IPS, and the CWD.
Satisfaction of the third condition is guaranteed if we use
any one of the distributions of Cohen’s class, which again is
the case of the ones we will be using (WD, IPS and CWD)

5. EXPERIMENTAL RESULTS

As examples, we will be using three different time-frequency
distributions (WD, IPS and CWD). These distributions can
be thought of as representatives of the three types of behav-
ior that the bilinear distributions may have, in what refers
to the cross-terms, always present when dealing with multi-
component signals. In the WD, the cross-terms lie midway
between the components of the signal. This fact will, in
many instances, originate spurious points of symmetry, and
thus seriously degrade the usefulness of the extracted IF}
(this problem can be alleviated with appropriate smooth-
ing). IPS, on the other hand, has cross-terms lying on top of
the true components of the signal, originating an amplitude
modulation of these terms. These time-varying amplitudes
will sometimes force the best symmetry point to be found
in the peaks of the different components (preference will be
given to the strongest one). The CWD, with its reduced
interference kernel, will have its cross-terms spread in the
time-frequency plane [2], thus largely ignoring them in the
process of detecting the best point of symmetry. These dif-
ferent types of behavior can be seen in Figure 2. In this
figure, the values for IF; obtained with the CWD, IPS and
WD are marked with a cross, asterisk, or circle, respec-
tively. For comparison purposes, the same signal of Figure
1 was used.
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Figure 2: CWD. Two chirps of different amplitudes

In Figure 2, we had a 20% difference in amplitude be-
tween the two components. If we had been looking for the
center of mass of the several S¢, as in [5] (we could not, in

that case, have used these non-positive distributions), this
difference in amplitude would have implied a proportional
shift in IF; towards the stronger component. This depen-
dency of IF; on the ratio of amplitudes of the components
may, or may not, be considered undesirable, depending on
our concept of Instantaneous Frequency. It doesn’t hap-
pen when we look for the point of maximum symmetry,
which seems to better enable an interpretation of IF; as
the heterodination law of the signal. This constancy of IF}
is, however, typically short lived. For higher ratios of the
individual amplitudes, and for all three distributions, we
will see IF; locking quickly on the strongest component. In
short: when the amplitudes are similar, this criterion goes
for the equidistant locations; when the amplitudes start to
differ, the strongest component is selected.

6. CONCLUSION

The traditional definition (IF; = @ (t)) is inappropriate,
since its results are paradoxical in most situations. The
key reason for the success/failure of this method seems to
lie in the symmetry of (S;). For many types of Sy, the
following facts have been ascertained: If symmetry exists,
then ap/ (t) gives acceptable results; when symmetry in S;
doesn’t exist, the traditional definition is making a linear
approximation to the problem of determining the point of
maximum symmetry. A criterion for determining IF; was
proposed, based on maximization of the symmetry of S;.
The conditions under which the results are guaranteed to
be physically acceptable were presented, and some examples
were given.
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